Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 582(7810): 37-38, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494075
2.
Phys Rev Lett ; 123(19): 193605, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765220

RESUMO

We implement a microscopic spin filter for cold fermionic atoms in a quantum point contact (QPC) and create fully spin-polarized currents while retaining conductance quantization. Key to our scheme is a near-resonant optical tweezer inducing a large effective Zeeman shift inside the QPC while its local character limits dissipation. We observe a renormalization of this shift due to interactions of only a few atoms in the QPC. Our work represents the analog of an actual spintronic device and paves the way to studying the interplay between spin splitting and interactions far from equilibrium.

3.
Proc Natl Acad Sci U S A ; 115(34): 8563-8568, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093388

RESUMO

We report on coupled heat and particle transport measurements through a quantum point contact (QPC) connecting two reservoirs of resonantly interacting, finite temperature Fermi gases. After heating one of them, we observe a particle current flowing from cold to hot. We monitor the temperature evolution of the reservoirs and find that the system evolves after an initial response into a nonequilibrium steady state with finite temperature and chemical potential differences across the QPC. In this state any relaxation in the form of heat and particle currents vanishes. From our measurements we extract the transport coefficients of the QPC and deduce a Lorenz number violating the Wiedemann-Franz law by one order of magnitude, a characteristic persisting even for a wide contact. In contrast, the Seebeck coefficient takes a value close to that expected for a noninteracting Fermi gas and shows a smooth decrease as the atom density close to the QPC is increased beyond the superfluid transition. Our work represents a fermionic analog of the fountain effect observed with superfluid helium and poses challenges for microscopic modeling of the finite temperature dynamics of the unitary Fermi gas.

4.
Nat Commun ; 6: 6162, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635999

RESUMO

Phase transitions are ubiquitous in our three-dimensional world. By contrast, most conventional transitions do not occur in infinite uniform low-dimensional systems because of the increased role of thermal fluctuations. The crossover between these situations constitutes an important issue, dramatically illustrated by Bose-Einstein condensation: a gas strongly confined along one direction of space may condense along this direction without exhibiting true long-range order in the perpendicular plane. Here we explore transverse condensation for an atomic gas confined in a novel trapping geometry, with a flat in-plane bottom, and we relate it to the onset of an extended (yet of finite-range) in-plane coherence. By quench crossing the transition, we observe topological defects with a mean number satisfying the universal scaling law predicted by Kibble-Zurek mechanism. The approach described can be extended to investigate the topological phase transitions that take place in planar quantum fluids.

5.
Phys Rev Lett ; 113(2): 020404, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062145

RESUMO

We present a general "fit-free" method for measuring the equation of state (EoS) of a scale-invariant gas. This method, which is inspired from the procedure introduced by Ku et al. [Science 335, 563 (2012)] for the unitary three-dimensional Fermi gas, provides a general formalism which can be readily applied to any quantum gas in a known trapping potential, in the frame of the local density approximation. We implement this method on a weakly interacting two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless transition and determine its EoS with unprecedented accuracy in the critical region. Our measurements provide an important experimental benchmark for classical-field approaches which are believed to accurately describe quantum systems in the weakly interacting but nonperturbative regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...