Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oncogene ; 35(32): 4179-87, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751771

RESUMO

CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt ß-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease-free survival.


Assuntos
Neoplasias Colorretais/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Genes Supressores de Tumor , Animais , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Transdução de Sinais
3.
Oncogene ; 33(29): 3861-8, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23975432

RESUMO

Kcnq1, which encodes for the pore-forming α-subunit of a voltage-gated potassium channel, was identified as a gastrointestinal (GI) tract cancer susceptibility gene in multiple Sleeping Beauty DNA transposon-based forward genetic screens in mice. To confirm that Kcnq1 has a functional role in GI tract cancer, we created Apc(Min) mice that carried a targeted deletion mutation in Kcnq1. Results demonstrated that Kcnq1 is a tumor suppressor gene as Kcnq1 mutant mice developed significantly more intestinal tumors, especially in the proximal small intestine and colon, and some of these tumors progressed to become aggressive adenocarcinomas. Gross tissue abnormalities were also observed in the rectum, pancreas and stomach. Colon organoid formation was significantly increased in organoids created from Kcnq1 mutant mice compared with wild-type littermate controls, suggesting a role for Kcnq1 in the regulation of the intestinal crypt stem cell compartment. To identify gene expression changes due to loss of Kcnq1, we carried out microarray studies in the colon and proximal small intestine. We identified altered genes involved in innate immune responses, goblet and Paneth cell function, ion channels, intestinal stem cells, epidermal growth factor receptor and other growth regulatory signaling pathways. We also found genes implicated in inflammation and in cellular detoxification. Pathway analysis using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis confirmed the importance of these gene clusters and further identified significant overlap with genes regulated by MUC2 and CFTR, two important regulators of intestinal homeostasis. To investigate the role of KCNQ1 in human colorectal cancer (CRC), we measured protein levels of KCNQ1 by immunohistochemistry in tissue microarrays containing samples from CRC patients with liver metastases who had undergone hepatic resection. Results showed that low expression of KCNQ1 expression was significantly associated with poor overall survival.


Assuntos
Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Neoplasias Gastrointestinais/mortalidade , Neoplasias Gastrointestinais/patologia , Perfilação da Expressão Gênica , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Knockout , Mucina-2/genética , Mucina-2/metabolismo , Estadiamento de Neoplasias , Fenótipo , Prognóstico , Transdução de Sinais
4.
Cancer Sci ; 99(11): 2113-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19037975

RESUMO

Goblet cell depletion and down-regulation of MUC2 expression are observed in a significant percentage of human non-mucinous colorectal adenocarcinomas. Direct evidence for the role of MUC2 in gastrointestinal tumor formation was demonstrated by a knockout of Muc2 in mice that resulted in the development of adenocarcinomas in the small and large intestine. The secretory phospholipase Pla2g2a is a protein that confers resistance to Apc(Min/+)-induced intestinal tumorigenesis. Like Muc2, in the large intestine Pla2g2a is exclusively expressed by the goblet cells and Pla2g2a's tumor resistance is also strongest in the large intestine. Possible genetic interactions between Muc2 and Pla2g2a were examined by creating C57BL/6-Muc2(-/-)Pla2g2a transgenic mice. Expression of a Pla2g2a transgene reduced tumorigenesis in the large intestine by 90% in male Muc2(-/-) mice and by nearly 100% in female Muc2(-/-) mice. Expression of Pla2g2a also inhibited tumor progression. Microarray gene expression studies revealed Pla2g2a target genes that modulate intestinal energy metabolism, differentiation, inflammation, immune responses and proliferation. Overall, results of the present study demonstrate an Apc-independent role for Pla2g2a in tumor resistance and indicate that Pla2g2a plays an important role, along with Muc2, in protection of the intestinal mucosa.


Assuntos
Transformação Celular Neoplásica/genética , Fosfolipases A2 do Grupo II/genética , Mucina-2/genética , Animais , Feminino , Expressão Gênica , Fosfolipases A2 do Grupo II/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucina-2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
5.
Cancer Res ; 60(14): 3965-70, 2000 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10919675

RESUMO

Altered patterns of the 5-cytosine methylation of genomic DNA are associated with the development of a wide range of human cancers. We have studied the mechanisms and genetic pathways by which a targeted heterozygous deficiency in the murine 5-cytosine DNA methyltransferase gene (Dnmt1(N/+)) diminishes intestinal tumorigenesis in C57BL/6-multiple intestinal neoplasia (Min)/+ mice. We found that Dnmt1(N/+) retards the net growth rate of intestinal adenomas and reduces tumor multiplicity by approximately 50%. This tumor resistance affects the entire intestinal tract and is independent of the status of modifier of Min 1 and p53, two loci that have been found to confer strong resistance to Min-induced neoplasia Interestingly, Dnmt/(N/+) and modifier of Min 1 resistance interact synergistically, together virtually eliminating tumor incidence. This finding may provide an insight into potential combinatorial therapeutic approaches for treating human colon cancer.


Assuntos
Adenoma/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferases/genética , Genes p53/genética , Neoplasias Intestinais/tratamento farmacológico , Adenoma/genética , Adenoma/patologia , Fatores Etários , Alelos , Animais , Apoptose/genética , Bromodesoxiuridina/metabolismo , Divisão Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/fisiologia , Metilação de DNA , Replicação do DNA/genética , Feminino , Genótipo , Mutação em Linhagem Germinativa , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitose/genética , Mutagênese Sítio-Dirigida , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia
6.
Oncogene ; 19(28): 3182-92, 2000 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-10918573

RESUMO

The Mom1 (Modifier of Min-1) region of distal chromosome 4 was identified during a screen for polymorphic modifiers of intestinal tumorigenesis in ApcMin/+ mice. Here, we demonstrate that the Mom1AKR allele consists of two genetic components. These include the secretory phospholipase Pla2g2a, whose candidacy as a Mom1 resistance modifier has now been tested with several transgenic lines. A second region, distal to Pla2g2a, has also been identified using fine structure recombinants. Pla2g2aAKR transgenic mice demonstrate a modest resistance to tumorigenesis in the small intestine and a very robust resistance in the large intestine. Moreover, the tumor resistance in the colon of Pla2g2aAKR animals is dosage-dependent, a finding that is consistent with our observation that Pla2g2a is expressed in goblet cells. By contrast, mice carrying the distal Mom1 modifier demonstrate a modest tumor resistance that is confined to the small intestine. Thus, the phenotypes of these two modifier loci are complementary, both in their quantitative and regional effects. The additive effects and tight linkage of these modifiers may have been necessary for the initial identification of the Mom1 region.


Assuntos
Polipose Adenomatosa do Colo/genética , Proteínas do Citoesqueleto/genética , Fosfolipases A/genética , Proteína da Polipose Adenomatosa do Colo , Animais , Feminino , Células Caliciformes/patologia , Humanos , Imunidade Inata/genética , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfolipases A/biossíntese
7.
Philos Trans R Soc Lond B Biol Sci ; 353(1370): 915-23, 1998 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-9684289

RESUMO

The Min (multiple intestinal neoplasia) strain of the laboratory mouse and its derivatives permit the fundamental study of factors that regulate the transition between normal and neoplastic growth. A gene of central importance in mediating these alternative patterns of growth is Apc, the mouse homologue of the human adenomatous polyposis coli (APC) gene. When adenomas form in the Min mouse, both copies of the Apc gene must be inactivated. One copy is mutated by the nonsense Apc allele carried in heterozygous form in this strain. The other copy can be silenced by any of several mechanisms. These range from loss of the homologue bearing the wild-type Apc allele; to interstitial deletions surrounding the wild-type allele; to intragenic mutation, including nonsense alleles; and finally, to a reduction in expression of the locus, perhaps owing to mutation in a regulatory locus. Each of these proposed mechanisms may constitute a two-hit genetic process as initially posited by Knudson; however, apparently the two hits could involve either a single locus or two loci. The kinetic order for the transition to adenoma may be still higher than two, if polyclonal adenomas require stronger interactions than passive fusion. The severity of the intestinal neoplastic phenotype of the Min mouse is strongly dependent upon loci other than Apc. One of these, Mom1, has now been rigorously identified at the molecular level as encoding an active resistance conferred by a secretory phospholipase. Mom1 acts locally within a crypt lineage, not systemically. Within the crypt lineage, however, its action seems to be non-autonomous: when tumours arise in Mom1 heterozygotes, the active resistance allele is maintained in the tumour (MOH or maintenance of heterozygosity). Indeed, the secretory phospholipase is synthesized by post-mitotic Paneth cells, not by the proliferative cells that presumably generate the tumour. An analysis of autonomy of modifier gene action in chimeric mice deserves detailed attention both to the number of genetic factors for which an animal is chimeric and to the clonal structure of the tissue in question. Beyond Mom1, other loci can strongly modify the severity of the Min phenotype. An emergent challenge is to find ways to identify the full set of genes that interact with the intestinal cancer predisposition of the Min mouse strain. With such a set, one can then work, using contemporary mouse genetics, to identify the molecular, cellular and organismal strategies that integrate their functions. Finally, with appropriately phenotyped human families, one can investigate by a candidate approach which modifying factors influence the epidemiology of human colon cancer. Even if a candidate modifier does not explain any of the genetic epidemiology of colon cancer in human populations, modifier activities discovered by mouse genetics provide candidates for chemopreventive and/or therapeutic modalities in the human.


Assuntos
Mucosa Intestinal/fisiologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/fisiopatologia , Adenoma/genética , Adenoma/patologia , Polipose Adenomatosa do Colo/genética , Animais , Deleção Cromossômica , Genes APC , Genes Reguladores , Humanos , Mucosa Intestinal/citologia , Neoplasias Intestinais/patologia , Camundongos
8.
Nat Genet ; 17(1): 88-91, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9288104

RESUMO

Individuals inheriting the same mutation predisposing to cancer may show very different outcomes, ranging from early aggressive cancer to disease-free survival. Experimental mouse models can provide a powerful tool to identify factors in the environment and genetic background that account for such modifications. The Min mouse strain, in which the ApcMin mutation disrupts the mouse homologue of the human familial polyposis gene, develops intestinal neoplasms whose multiplicity is strongly affected by genetic background. We previously mapped a strong modifier locus, Mom1 (modifier of Min-1), to a 4-cM region on mouse chromosome 4 containing a candidate gene Pla2g2a encoding a secretory phospholipase. Here, we report that a cosmid transgene overexpressing Pla2g2a caused a reduction in tumour multiplicity and size, comparable to that conferred by a single copy of the resistance allele of Mom1. These results offer strong evidence that this secretory phospholipase can provide active tumour resistance. The association of Pla2g2a with Mom1 thus withstands a strong functional test and is likely to represent the successful identification of a polymorphic quantitative trait locus in mammals.


Assuntos
Mapeamento Cromossômico , Genes Supressores de Tumor , Neoplasias Intestinais/genética , Fosfolipases A/genética , Polipose Adenomatosa do Colo/genética , Animais , Sequência de Bases , Primers do DNA , Genes APC , Genótipo , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos AKR , Camundongos Transgênicos , Dados de Sequência Molecular , Fosfolipases A/análise , Fosfolipases A/biossíntese , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...