Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(2)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547529

RESUMO

Objective.Neuromodulation, particularly electrical stimulation, necessitates high spatial resolution to achieve artificial vision with high acuity. In epiretinal implants, this is hindered by the undesired activation of distal axons. Here, we investigate focal and axonal activation of retinal ganglion cells (RGCs) in epiretinal configuration for different sinusoidal stimulation frequencies.Approach.RGC responses to epiretinal sinusoidal stimulation at frequencies between 40 and 100 Hz were tested inex-vivophotoreceptor degenerated (rd10) isolated retinae. Experiments were conducted using a high-density CMOS-based microelectrode array, which allows to localize RGC cell bodies and axons at high spatial resolution.Main results.We report current and charge density thresholds for focal and distal axon activation at stimulation frequencies of 40, 60, 80, and 100 Hz for an electrode size with an effective area of 0.01 mm2. Activation of distal axons is avoided up to a stimulation amplitude of 0.23µA (corresponding to 17.3µC cm-2) at 40 Hz and up to a stimulation amplitude of 0.28µA (14.8µC cm-2) at 60 Hz. The threshold ratio between focal and axonal activation increases from 1.1 for 100 Hz up to 1.6 for 60 Hz, while at 40 Hz stimulation frequency, almost no axonal responses were detected in the tested intensity range. With the use of synaptic blockers, we demonstrate the underlying direct activation mechanism of the ganglion cells. Finally, using high-resolution electrical imaging and label-free electrophysiological axon tracking, we demonstrate the extent of activation in axon bundles.Significance.Our results can be exploited to define a spatially selective stimulation strategy avoiding axonal activation in future retinal implants, thereby solving one of the major limitations of artificial vision. The results may be extended to other fields of neuroprosthetics to achieve selective focal electrical stimulation.


Assuntos
Retina , Próteses Visuais , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Microeletrodos , Axônios/fisiologia , Estimulação Elétrica/métodos
2.
Microsyst Nanoeng ; 8: 131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568135

RESUMO

Recording neural signals from delicate autonomic nerves is a challenging task that requires the development of a low-invasive neural interface with highly selective, micrometer-sized electrodes. This paper reports on the development of a three-dimensional (3D) protruding thin-film microelectrode array (MEA), which is intended to be used for recording low-amplitude neural signals from pelvic nervous structures by penetrating the nerves transversely to reduce the distance to the axons. Cylindrical gold pillars (Ø 20 or 50 µm, ~60 µm height) were fabricated on a micromachined polyimide substrate in an electroplating process. Their sidewalls were insulated with parylene C, and their tips were optionally modified by wet etching and/or the application of a titanium nitride (TiN) coating. The microelectrodes modified by these combined techniques exhibited low impedances (~7 kΩ at 1 kHz for Ø 50 µm microelectrode with the exposed surface area of ~5000 µm²) and low intrinsic noise levels. Their functionalities were evaluated in an ex vivo pilot study with mouse retinae, in which spontaneous neuronal spikes were recorded with amplitudes of up to 66 µV. This novel process strategy for fabricating flexible, 3D neural interfaces with low-impedance microelectrodes has the potential to selectively record neural signals from not only delicate structures such as retinal cells but also autonomic nerves with improved signal quality to study neural circuits and develop stimulation strategies in bioelectronic medicine, e.g., for the control of vital digestive functions.

3.
Front Cell Neurosci ; 16: 1033738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568888

RESUMO

With vision impairment affecting millions of people world-wide, various strategies aiming at vision restoration are being undertaken. Thanks to decades of extensive research, electrical stimulation approaches to vision restoration began to undergo clinical trials. Quite recently, another technique employing optogenetic therapy emerged as a possible alternative. Both artificial vision restoration strategies reported poor spatial resolution so far. In this article, we compared the spatial resolution inferred ex vivo under ideal conditions using a computational model analysis of the retinal ganglion cell (RGC) spiking activity. The RGC spiking was stimulated in epiretinal configuration by either optogenetic or electrical means. RGCs activity was recorded from the ex vivo retina of transgenic late-stage photoreceptor-degenerated mice (rd10) using a high-density Complementary Metal Oxide Semiconductor (CMOS) based microelectrode array. The majority of retinal samples were stimulated by both, optogenetic and electrical stimuli using a spatial grating stimulus. A population-level analysis of the spiking activity of identified RGCs was performed and the spatial resolution achieved through electrical and optogenetic photo-stimulation was inferred using a support vector machine classifier. The best f1 score of the classifier for the electrical stimulation in epiretinal configuration was 86% for 32 micron wide gratings and increased to 100% for 128 microns. For optogenetically activated cells, we obtained high f1 scores of 82% for 10 microns grid width for a photo-stimulation frequency of 2.5 Hz and 73% for a photo-stimulation frequency of 10 Hz. A subsequent analysis, considering only the RGCs modulated in both electrical and optogenetic stimulation protocols revealed no significant difference in the prediction accuracy between the two stimulation modalities. The results presented here indicate that a high spatial resolution can be achieved for electrical or optogenetic artificial stimulation using the activated retinal ganglion cell output.

4.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955800

RESUMO

Millions of people worldwide are diagnosed with retinal dystrophies such as retinitis pigmentosa and age-related macular degeneration. A retinal prosthesis using organic photovoltaic (OPV) semiconductors is a promising therapeutic device to restore vision to patients at the late onset of the disease. However, an appropriate cytotoxicity approach has to be employed on the OPV materials before using them as retinal implants. In this study, we followed ISO standards to assess the cytotoxicity of D18, Y6, PFN-Br and PDIN individually, and as mixtures of D18/Y6, D18/Y6/PFN-Br and D18/Y6/PDIN. These materials were proven for their high performance as organic solar cells. Human RPE cells were put in direct and indirect contact with these materials to analyze their cytotoxicity by the MTT assay, apoptosis by flow cytometry, and measurements of cell morphology and proliferation by immunofluorescence. We also assessed electrophysiological recordings on mouse retinal explants via microelectrode arrays (MEAs) coated with D18/Y6. In contrast to PFN-Br and PDIN, all in vitro experiments show no cytotoxicity of D18 and Y6 alone or as a D18/Y6 mixture. We conclude that D18/Y6 is safe to be subsequently investigated as a retinal prosthesis.


Assuntos
Retinose Pigmentar , Próteses Visuais , Animais , Eletrodos Implantados , Humanos , Camundongos , Microeletrodos , Retina
5.
J Neural Eng ; 18(4)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34049288

RESUMO

Objective. Most neuroprosthetic implants employ pulsatile square-wave electrical stimuli, which are significantly different from physiological inter-neuronal communication. In case of retinal neuroprosthetics, which use a certain type of pulsatile stimuli, reliable object and contrast discrimination by implanted blind patients remained challenging. Here we investigated to what extent simple objects can be discriminated from the output of retinal ganglion cells (RGCs) upon sinusoidal stimulation.Approach. Spatially confined objects were formed by different combinations of 1024 stimulating microelectrodes. The RGC activity in theex vivoretina of photoreceptor-degenerated mouse, of healthy mouse or of primate was recorded simultaneously using an interleaved recording microelectrode array implemented in a CMOS-based chip.Main results. We report that application of sinusoidal electrical stimuli (40 Hz) in epiretinal configuration instantaneously and reliably modulates the RGC activity in spatially confined areas at low stimulation threshold charge densities (40 nC mm-2). Classification of overlapping but spatially displaced objects (1° separation) was achieved by distinct spiking activity of selected RGCs. A classifier (regularized logistic regression) discriminated spatially displaced objects (size: 5.5° or 3.5°) with high accuracy (90% or 62%). Stimulation with low artificial contrast (10%) encoded by different stimulus amplitudes generated RGC activity, which was classified with an accuracy of 80% for large objects (5.5°).Significance. We conclude that time-continuous smooth-wave stimulation provides robust, localized neuronal activation in photoreceptor-degenerated retina, which may enable future artificial vision at high temporal, spatial and contrast resolution.


Assuntos
Retina , Células Ganglionares da Retina , Potenciais de Ação , Animais , Estimulação Elétrica , Humanos , Camundongos , Microeletrodos
6.
Nature ; 593(7858): 205-210, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981049

RESUMO

The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications1. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the quantum chip in a dilution refrigerator and the room-temperature electronics. Advanced lithography supports the fabrication of both control electronics and qubits in silicon using technology compatible with complementary metal oxide semiconductors (CMOS)2. When the electronics are designed to operate at cryogenic temperatures, they can ultimately be integrated with the qubits on the same die or package, overcoming the 'wiring bottleneck'3-6. Here we report a cryogenic CMOS control chip operating at 3 kelvin, which outputs tailored microwave bursts to drive silicon quantum bits cooled to 20 millikelvin. We first benchmark the control chip and find an electrical performance consistent with qubit operations of 99.99 per cent fidelity, assuming ideal qubits. Next, we use it to coherently control actual qubits encoded in the spin of single electrons confined in silicon quantum dots7-9 and find that the cryogenic control chip achieves the same fidelity as commercial instruments at room temperature. Furthermore, we demonstrate the capabilities of the control chip by programming a number of benchmarking protocols, as well as the Deutsch-Josza algorithm10, on a two-qubit quantum processor. These results open up the way towards a fully integrated, scalable silicon-based quantum computer.

7.
Cell Death Differ ; 28(4): 1317-1332, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33159184

RESUMO

Cone photoreceptor cell death in inherited retinal diseases, such as Retinitis Pigmentosa (RP), leads to the loss of high acuity and color vision and, ultimately to blindness. In RP, a vast number of mutations perturb the structure and function of rod photoreceptors, while cones remain initially unaffected. Extensive rod loss in advanced stages of the disease triggers cone death by a mechanism that is still largely unknown. Here, we show that secondary cone cell death in animal models for RP is associated with increased activity of histone deacetylates (HDACs). A single intravitreal injection of an HDAC inhibitor at late stages of the disease, when the majority of rods have already degenerated, was sufficient to delay cone death and support long-term cone survival in two mouse models for RP, affected by mutations in the phosphodiesterase 6b gene. Moreover, the surviving cones remained light-sensitive, leading to an improvement in visual function. RNA-seq analysis of protected cones demonstrated that HDAC inhibition initiated multi-level protection via regulation of different pro-survival pathways, including MAPK, PI3K-Akt, and autophagy. This study suggests a unique opportunity for targeted pharmacological protection of secondary dying cones by HDAC inhibition and creates hope to maintain vision in RP patients even in advanced disease stages.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Fármacos Neuroprotetores/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Retinose Pigmentar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Retinose Pigmentar/patologia
8.
Sci Rep ; 10(1): 9584, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513955

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Front Neurosci ; 14: 283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372899

RESUMO

Human cerebrospinal fluid (hCSF) has proven advantageous over conventional medium for culturing both rodent and human brain tissue. In addition, increased activity and synchrony, closer to the dynamic states exclusively recorded in vivo, were reported in rodent slices and cell cultures switching from artificial cerebrospinal fluid (aCSF) to hCSF. This indicates that hCSF possesses properties that are not matched by the aCSF, which is generally used for most electrophysiological recordings. To evaluate the possible significance of using hCSF as an electrophysiological recording medium, also for human brain tissue, we compared the network and single-cell firing properties of human brain slice cultures during perfusion with hCSF and aCSF. For measuring the overall activity from a majority of neurons within neocortical and hippocampal human slices, we used a microelectrode array (MEA) recording technique with 252 electrodes covering an area of 3.2 × 3.2 mm2. A second CMOS-based MEA with 4225 sensors on a 2 × 2 mm2 area was used for detailed mapping of action potential waveforms and cell identification. We found that hCSF increased the number of active electrodes and neurons and the firing rate of the neurons in the slices and induced an increase in the numbers of single channel and population bursts. Interestingly, not only an increase in the overall activity in the slices was observed, but a reconfiguration of the network could also be detected with specific activation and inactivation of subpopulations of neuronal ensembles. In conclusion, hCSF is an important component to consider for future human brain slice studies, especially for experiments designed to mimic parts of physiology and disease observed in vivo.

10.
Sci Rep ; 10(1): 2590, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098971

RESUMO

Brain function relies on circuits of spiking neurons with synapses playing the key role of merging transmission with memory storage and processing. Electronics has made important advances to emulate neurons and synapses and brain-computer interfacing concepts that interlink brain and brain-inspired devices are beginning to materialise. We report on memristive links between brain and silicon spiking neurons that emulate transmission and plasticity properties of real synapses. A memristor paired with a metal-thin film titanium oxide microelectrode connects a silicon neuron to a neuron of the rat hippocampus. Memristive plasticity accounts for modulation of connection strength, while transmission is mediated by weighted stimuli through the thin film oxide leading to responses that resemble excitatory postsynaptic potentials. The reverse brain-to-silicon link is established through a microelectrode-memristor pair. On these bases, we demonstrate a three-neuron brain-silicon network where memristive synapses undergo long-term potentiation or depression driven by neuronal firing rates.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Eletrônica/métodos , Embrião de Mamíferos , Hipocampo/citologia , Hipocampo/fisiologia , Microeletrodos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/citologia , Cultura Primária de Células , Ratos , Silício/química , Titânio/química
11.
J Neural Eng ; 15(4): 045003, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29717707

RESUMO

OBJECTIVE: Retinal prostheses have shown promising results in restoring some visual perception to blind patients but successful identification of objects of different size remains a challenge. Here we investigated electrode-size specific stimulation thresholds and their variability for subretinal electrical stimulation. Our findings indicate the range of charge densities required to achieve identification of small objects and the object-size-specific scaling of stimulation threshold. APPROACH: Using biphasic voltage-limited current stimuli provided by a light-sensitive microchip, we determined threshold charge densities for stimulation with variable electrode sizes. The stimulated activation of the retinal network was identified by recording the spiking of retinal ganglion cells in photoreceptor-degenerated mouse rd10 retinas. Stimulation thresholds were determined for cells with saturating stimulus response relationships (SRRs) but not for cells characterized by monotonically increasing or decreasing SRRs. MAIN RESULTS: Stimulation thresholds estimated in rd10 retinas ranged between 100-900 µC cm-2 for stimulation with small electrodes (30 µm diameter). Threshold charge density decreased with increasing electrode size and plateaued at 20 µC cm-2 for an electrode diameter larger than 300 µm. This trend of decreasing threshold down to a plateau value was confirmed in wild-type mouse retina suggesting an underlying physiological source. SIGNIFICANCE: Our results suggest the following guidelines for retinal prosthetics employing biphasic current pulses. The encoding of small objects may be achieved through the activation of a confined set of different retinal ganglion cells, with individual stimulation thresholds spanning a wide range of charge densities. The encoding of increasing object sizes may be achieved by decreasing stimulation charge density.


Assuntos
Desenho de Prótese/métodos , Retina/fisiologia , Próteses Visuais , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Líquido Extracelular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos/normas , Desenho de Prótese/instrumentação , Desenho de Prótese/normas , Próteses Visuais/normas
12.
Nano Lett ; 17(2): 1001-1006, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28080065

RESUMO

We report on dual-gate reflectometry in a metal-oxide-semiconductor double-gate silicon transistor operating at low temperature as a double quantum dot device. The reflectometry setup consists of two radio frequency resonators respectively connected to the two gate electrodes. By simultaneously measuring their dispersive responses, we obtain the complete charge stability diagram of the device. Electron transitions between the two quantum dots and between each quantum dot and either the source or the drain contact are detected through phase shifts in the reflected radio frequency signals. At finite bias, reflectometry allows probing charge transitions to excited quantum-dot states, thereby enabling direct access to the energy level spectra of the quantum dots. Interestingly, we find that in the presence of electron transport across the two dots the reflectometry signatures of interdot transitions display a dip-peak structure containing quantitative information on the charge relaxation rates in the double quantum dot.

13.
Nano Lett ; 15(5): 2958-64, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25923197

RESUMO

We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...