Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 880: 163240, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023823

RESUMO

Separately collected food waste (SC-FW) is effectively recycled through industrial anaerobic digestion (AD) and composting. However, the presence of improper materials in SC-FW not only generates technical problems to AD and composting, but also lowers the quality of the outputs of the processes. As a consequence, improper materials found in SC-FW cause not negligible environmental and economic burdens. In this study, the environmental and economic impacts due to the presence of unsuitable materials in the SC-FW, determined through compositional analysis, were estimated through life cycle assessment and environmental life cycle costing approaches. Three different scenarios were analysed for both AD and composting processes: (i) the current situation (CS); (ii) the improved scenario (AS) with an amount of improper materials in SC-FW reduced to 3 % (w/w); (iii) the ideal scenario (IS) with the total absence of foreign materials. Environmental benefits were determined for the AS and IS scenarios in 17 of the 19 analysed impact categories. Considering the GHG emissions, higher savings were measured for AD in AS and IS scenarios (47 % and 79 %, respectively) than in CS scenario. Similarly, savings of -10.4 kg fossil oil eq/tonSC-FW (AS) and - 17.1 kg fossil oil eq/tonSC-FW (IS) for AD could be obtained with respect to the CS scenario. Greater economic benefits were calculated for AD (-76.4 €/tonSC-FW) and composting (-52.2 €/tonSC-FW) in the IS scenario. Savings up to € 2,249,780 and € 3,888,760 could have been obtained in 2022 by reducing to 3 % (w/w) and eliminating, respectively, the amount of improper materials in the SC-FW. The results of the compositional analyses of SC-FW allowed to identify the incorrect behaviours in FW source-sorting activity and to plan interventions to improve the current FW management system. The quantified environmental and economic benefits could further motivate citizens to correctly differentiate FW.


Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Alimentos , Anaerobiose
2.
Artigo em Inglês | MEDLINE | ID: mdl-33923770

RESUMO

Phenol is a major component in the scrubber wastewater used for syngas purification in biomass-based gasification plants. Adsorption is a common strategy for wastewater purification, and carbon materials, such as activated carbons and biochar, may be used for its remediation. In this work, we compare the adsorption behavior towards phenol of two biochar samples, produced by pyrolysis and gasification of lignocellulose biomass, with two commercial activated carbons. Obtained data were also used to assess the effect of textural properties (i.e., surface area) on phenol removal. Continuous tests in lab-scale columns were also carried out and the obtained data were processed with literature models in order to obtain design parameters for scale-up. Results clearly indicate the superiority of activated carbons due to the higher pore volume, although biomass-derived char may be more suitable from an economic and environmental point of view. The phenol adsorption capacity increases from about 65 m/g for gasification biochar to about 270 mg/g for the commercial activated carbon. Correspondingly, service time of commercial activated carbons was found to be about six times higher than that of gasification biochar. Finally, results indicate that phenol may be used as a model for characterizing the adsorption capacity of the investigated carbon materials, but in the case of real waste water the carbon usage rate should be considered at least 1.5 times higher than that calculated for phenol.


Assuntos
Carvão Vegetal , Águas Residuárias , Adsorção , Biomassa
3.
Waste Manag ; 65: 92-103, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28410890

RESUMO

Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nm3dry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up.


Assuntos
Automóveis , Temperatura Alta , Eliminação de Resíduos , Meio Ambiente , Itália , Óleos
4.
Waste Manag ; 33(3): 672-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22749720

RESUMO

An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.


Assuntos
Gases , Eliminação de Resíduos/métodos , Borracha , Resíduos Sólidos , Carbono , Dióxido de Carbono , Monóxido de Carbono , Temperatura Alta , Hidrogênio , Metano , Pressão , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...