Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(7): 151, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902586

RESUMO

A new fusagra-like virus infecting papaya (Carica papaya L.) was genetically characterized. The genome of the virus, provisionally named "papaya sticky fruit-associated virus" (PSFaV), is a single molecule of double-stranded RNA, 9,199 nucleotides (nt) in length, containing two discontinuous open reading frames. Pairwise sequence comparisons based on complete RNA-dependent-RNA-polymerase (RdRp) sequences revealed identity of 79.4% and 83.3% at the nt and amino acid (aa) level, respectively, to babaco meleira-like virus (BabMelV), an uncharacterized virus sequence discovered in babaco (Vasconcellea x heilbornii) in Ecuador. Additional plant-associated viruses with sequence identity in the 50% range included papaya meleira virus (PMeV) isolates from Brazil. Phylogenetic analysis based on the amino acid sequences of the capsid protein (CP), RdRp, and CP-RdRp fusion protein genes placed PSFaV in a group within a well-supported clade that shares a recent ancestor with Sclerotium rolfsii RNA virus 2 and Phlebiopsis gigantea mycovirus dsRNA 2, two fungus-associated fusagraviruses. Genomic features and phylogenetic relatedness suggest that PSFaV, along with its closest relative BabMelV, represent a species of novel plant-associated virus classified within the recently established family Fusagraviridae.


Assuntos
Carica , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , RNA Viral , Carica/virologia , Genoma Viral/genética , Equador , Doenças das Plantas/virologia , RNA Viral/genética , Sequenciamento Completo do Genoma , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Proteínas do Capsídeo/genética
2.
Viruses ; 15(6)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376679

RESUMO

Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco.


Assuntos
Bromoviridae , Caricaceae , Ilarvirus , Rhabdoviridae , Humanos , Viroma , Ilarvirus/genética , Plantas
3.
Arch Virol ; 168(4): 102, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877420

RESUMO

The complete genomic sequence of a previously uncharacterized virus provisionally named "Bursera graveolens associated totivirus 1" (BgTV-1) was obtained from Bursera graveolens (Kunth) Triana & Planch., a tree known as "palo santo" in Ecuador. The BgTV-1 genome is a monopartite double-stranded RNA (dsRNA) that is 4794 nucleotides (nt) long (GenBank accession number ON988291). Phylogenetic analysis of the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) placed BgTV-1 in a clade with other plant-associated totiviruses. Amino acid (aa) sequence comparisons of putative BgTV-1 proteins showed the highest sequence similarity to those of taro-associated totivirus L (QFS21890.1-QFS21891.1) and Panax notoginseng virus A (YP_009225664.1- YP_009225665.1), with 51.4% and 49.8% identity, respectively, in the CP and 56.4% and 55.2% identity, respectively, in the RdRp. BgTV-1 was not detected in total RNA from either of the two endophytic fungi cultured from BgTV-1-positive B. graveolens leaves, suggesting that BgTV-1 may be a plant-infecting totivirus. Based on its distinct host and the low aa sequence similarity between the CP of BgTV-1 and its counterparts from the closest relatives, the virus described in this study should be assigned as a new member of the genus Totivirus.


Assuntos
Bursera , Totivirus , Equador , Filogenia , Proteínas do Capsídeo/genética , RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA/genética
4.
Plant Dis ; 107(6): 1649-1663, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36572970

RESUMO

Papaya sticky disease (PSD) is a major virus disorder of papaya (Carica papaya). The disease is characterized by fruit damage caused by the oxidation of spontaneously exuded latex. In Brazil, PSD is caused by the coinfection of two viruses, papaya meleira virus (PMeV), a toti-like virus, and papaya meleira virus-2 (PMeV-2), an umbra-like virus. The disorder has also been reported in Mexico and, more recently, in Australia, but the presence of both PMeV and PMeV-2 in symptomatic plants has been documented only in Brazil. In 2021, 2-year-old papaya plants (cultivar Passion Red) exhibiting PSD-like symptoms were observed in Santa Elena Province, Ecuador. Molecular tests of leaf tissue and fruit latex from symptomatic plants failed to detect PMeV. However, papaya virus Q (PpVQ), an umbra-like virus related to but distinct from PMeV-2, and a novel virus, tentatively named papaya sticky fruit-associated virus (PSFaV), were found in the symptomatic samples. PSFaV shares 56% nucleotide identity with the genome of PMeV, suggesting that PSD symptoms can be caused by "couples" of viruses related to but distinct from PMeV (a toti-like virus) and PMeV-2 (an umbra-like virus). This review discusses the history and epidemiology of PSD and the genomic features of newly discovered virus couples involved in this syndrome. Given the unusual etiology of PSD, which involves distinct virus species, the importance of implementing proper diagnostic approaches for PSD is highlighted.


Assuntos
Carica , Vírus de Plantas , Vírus de RNA , Vírus de RNA/genética , Vírus de Plantas/genética , Látex , Folhas de Planta
5.
Plants (Basel) ; 11(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807598

RESUMO

Babaco is a fast-growing herbaceous shrub with great commercial potential because of the organoleptic properties of its fruit. Babaco mosaic virus (BabMV) is a potexvirus in the family Alphaflexiviridae affecting babaco in all the provinces that produce this crop in Ecuador. BabMV was recently described but it has been affecting babaco for decades and, since many potexviruses are serologically indistinguishable, it may have been previously misidentified as papaya mosaic virus. Based on the coat protein (CP) gene, we aimed to study the distribution and epidemiological patterns of BabMV in babaco and chamburo over the years and to model its three-dimensional structure. Sequences of the CP were obtained from thirty-six isolates from plants collected in the main babaco-producing provinces of Ecuador between 2016 and 2021. The evolution rate of BabMV was estimated at 1.21 × 10-3 nucleotide substitutions site-1 year-1 and a time of origin of the most recent common ancestor around 1958.80. From molecular dynamics simulations, compared to other proteins of BabMV-RDRP, TGB1, and Alkb domain-the CP exhibited a higher flexibility with the C and N terminals as the most flexible regions. The reconstructed viral distribution provides dispersion patterns which have implications for control approaches of BabMV.

6.
Phytopathology ; 112(11): 2440-2448, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35694887

RESUMO

Two newly described viruses belonging to distinct families, Rhabdoviridae and Geminiviridae, were discovered co-infecting Hyptis pectinata from a tropical dry forest of Ecuador. The negative-sense RNA genome of the rhabdovirus, tentatively named Hyptis latent virus (HpLV), comprises 13,765 nucleotides with seven open reading frames separated by the conserved intergenic region 3'-AAUUAUUUUGAU-5'. Sequence analyses showed identities as high as 56% for the polymerase and 38% for the nucleocapsid to members of the genus Cytorhabdovirus. Efficient transmission of HpLV was mediated by the pea aphid (Acyrthosiphon pisum) in a persistent replicative manner. The single-stranded DNA genome of the virus tentatively named Hyptis golden mosaic virus (HpGMV) shared homology with members of the genus Begomovirus with bipartite genomes. The DNA-A component consists of 2,716 nucleotides (nt), whereas the DNA-B component contains 2,666 nt. Pairwise alignments using the complete genomic sequence of DNA-A of HpGMV and closest relatives showed identities below the cutoff (<91% shared nt) established by the ICTV as species demarcation, indicating that HpGMV should be classified in a distinct begomovirus species. Transmission experiments confirmed that the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a vector of HpGMV.


Assuntos
Begomovirus , Hemípteros , Hyptis , Rhabdoviridae , Animais , Hyptis/genética , Genoma Viral/genética , Virulência , Doenças das Plantas , Begomovirus/genética , Rhabdoviridae/genética , Insetos Vetores , Nucleotídeos , Filogenia
7.
Arch Virol ; 167(6): 1461-1466, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469094

RESUMO

A new potyvirus was found in Thevetia ahouai L. (Fam. Apocynaceae) plants exhibiting white spots on leaves and fruit discoloration in Ecuador. The complete genome sequences of two isolates of this virus, tentatively named "thevetia white spot virus" (ThWSV), were determined and found to be 9,912 (isolate 1) and 9,904 (isolate 2) nucleotides (nt) in length, each encoding a polyprotein of 363 kDa. Sequence comparisons between the two isolates showed 80 and 87% identity at the nt and amino acid (aa) level, respectively, whereas the overall sequence identity between ThWSV and its closest relative was 69% and 71% at the nt and aa level, respectively.


Assuntos
Potyvirus , Thevetia , Equador , Genoma Viral , Filogenia , Doenças das Plantas , Potyvirus/genética , RNA Viral/genética
8.
Plant Dis ; 106(2): 685-690, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34601954

RESUMO

A study was conducted to investigate epidemiological aspects of papaya virus E (PpVE), a cytorhabdovirus commonly found in papaya (Carica papaya L.) plantings in Ecuador. Besides papaya, PpVE was found in three Fabaceae weeds, including Rhynchosia minima, Centrosema plumieri, and Macroptilium lathyroides, the latter being the species with the highest virus prevalence. Greenhouse experiments showed that in M. lathyroides, single infections of PpVE induce only mild leaf mosaic, whereas in mixed infections with cowpea severe mosaic virus, PpVE contributes to severe mosaic. In papaya, PpVE did not induce noticeable symptoms in single or mixed infections with papaya ringspot virus. Transmission experiments confirmed that whiteflies (Bemisia tabaci) transmit PpVE in a semipersistent, nonpropagative manner.


Assuntos
Carica , Hemípteros , Rhabdoviridae , Animais , Folhas de Planta , Virulência
9.
Arch Virol ; 166(8): 2321-2324, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34046760

RESUMO

The complete sequence of a new viral RNA from babaco (Vasconcellea × heilbornii) was determined. The genome consisted of 4,584 nucleotides, containing two open reading frames (ORFs 1 and 2), a 9-nt-long noncoding region (NCR) at the 5' terminus, and an unusually long (1,843 nt) NCR at the 3' terminus. The presence of a potential heptameric slippery signal located 12 nt upstream the stop codon of ORF 1 suggests a -1 ribosomal frameshift mechanism for the translation of ORF 2. Sequence comparisons of ORF 2 revealed similarity to the RNA-dependent RNA polymerase (RdRp) of several umbra- and umbra-like viruses. Phylogenetic analysis of the RdRp placed the new virus in a well-supported and cohesive clade that includes umbra-like viruses reported in papaya, citrus, opuntia, maize, and sugarcane hosts. Viruses of this clade share a most recent ancestor with the umbraviruses but have different genomic features. The creation of a new genus within the family Tombusviridae is proposed for the classification of these novel viruses.


Assuntos
Caricaceae/virologia , Tombusviridae/classificação , Sequenciamento Completo do Genoma/métodos , Composição de Bases , Tamanho do Genoma , Genoma Viral , Fases de Leitura Aberta , Filogenia , Tombusviridae/genética , Tombusviridae/isolamento & purificação
10.
PLoS One ; 16(2): e0241652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33544737

RESUMO

A mild isolate of Papaya ringspot virus type-P, abbreviated as PRSV-mild, from Ecuador was sequenced and characterized. The most distinguishing symptom induced by PRSV-mild was gray powder-like leaf patches radiating from secondary veins. In greenhouse experiments, PRSV-mild did not confer durable protection against a severe isolate of the virus (PRSV-sev), obtained from the same field. Furthermore, isolate specific detection in mixed-infected plants showed that PRSV-sev becomes dominant in infections, rendering PRSV-mild undetectable at 90-120 days post superinfection. Virus testing using isolate-specific primers detected PRSV-mild in two out of five surveyed provinces, with 10% and 48% of incidence in Santo Domingo and Los Ríos, respectively. Comparative genomics showed that PRSV-mild lacks two amino acids from the coat protein region, whereas amino acid determinants for asymptomatic phenotypes were not identified. Recombination events were not predicted in the genomes of the Ecuadorean isolates. Phylogenetic analyses placed both PRSV-mild and PRSV-sev in a clade that includes an additional PRSV isolate from Ecuador and others from South America.


Assuntos
Carica/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Genoma Viral , Filogenia , Potyvirus/isolamento & purificação
11.
Plant Dis ; 103(9): 2246-2251, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31287777

RESUMO

Naranjilla (Solanum quitoense Lam.) and tamarillo (S. betaceum Cav.) are two important perennial solanaceous crops grown in Ecuador for the fresh market and juice production. Viruses infecting tamarillo and naranjilla are currently poorly studied, and no clean stock program exists in Ecuador. Here, we report a new virus, provisionally named as naranjilla mild mosaic virus (NarMMV) (genus Tymovirus, family Tymoviridae), isolated from naranjilla grown in an orchard in Pichincha Province, Ecuador. The complete genome of the virus consists of 6,348 nucleotides and encodes three open reading frames typical for members of the genus Tymovirus. Phylogenetically, Chiltepin yellow mosaic virus, Eggplant mosaic virus, and the recently characterized naranjilla chlorotic mosaic virus (NarCMV) were found to be the closest relatives of NarMMV. Unlike NarCMV, the new virus induced mild mosaic in naranjilla and more severe symptoms in tamarillo. Similar to NarCMV, NarMMV was unable to systemically infect potato. Virus surveys found NarMMV prevalent in naranjilla production areas of two provinces of Ecuador, especially where hybrid cultivars of naranjilla were cultivated. NarMMV was also found in field-grown tamarillo. The new virus cross-reacted with antibodies developed against NarCMV. Hence, this antibody will be useful for its field diagnosis using enzyme-linked immunosorbent assay or immunocapture reverse transcription polymerase chain reaction in future virus-free certification programs.


Assuntos
Solanum , Tymovirus , Equador , Genoma Viral/genética , Filogenia , Prevalência , Solanum/virologia , Tymovirus/classificação , Tymovirus/genética , Tymovirus/fisiologia
12.
PLoS One ; 14(6): e0215798, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220099

RESUMO

The complete genome of a new rhabdovirus infecting papaya (Carica papaya L.) in Ecuador, named papaya virus E, was sequenced and characterized. The negative-sense single-stranded RNA genome consists of 13,469 nucleotides with six canonical open reading frames (ORFs) and two accessory short ORFs predicted between ORFs corresponding to P3 (movement protein) and M (matrix protein). Phylogenetic analyses using amino acid sequences from the nucleocapsid, glycoprotein and polymerase, grouped the virus with members of the genus Cytorhabdovirus, with rice stripe mosaic virus, yerba mate chlorosis-associated virus and Colocasia bobone disease-associated virus as closest relatives. The 3' leader and 5' trailer sequences were 144 and 167 nt long, respectively, containing partially complementary motifs. The motif 3'-AUUCUUUUUG-5', conserved across rhabdoviruses, was identified in all but one intergenic regions; whereas the motif 3'-ACAAAAACACA-5' was found in three intergenic junctions. This is the first complete genome sequence of a cytorhabdovirus infecting papaya. The virus was prevalent in commercial plantings of Los Ríos, the most important papaya producing province of Ecuador. Recently, the genome sequence of bean-associated cytorhabdovirus was reported. The genome is 97% identical to that of papaya virus E, indicating that both should be considered strains of the same virus.


Assuntos
Carica/virologia , Rhabdoviridae/classificação , Sequenciamento Completo do Genoma/métodos , Carica/genética , Tamanho do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Vírus de Plantas/genética , Rhabdoviridae/genética
13.
PLoS One ; 12(12): e0189519, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244846

RESUMO

A new member of the genus Potexvirus was fully sequenced and characterized. The virus was isolated from babaco (Vasconcellea x heilbornii), a natural hybrid native to Ecuador. The virus contains a 6,692 nt long genome organized in five open reading frames in an arrangement typical of other potexviruses. Sequence comparisons revealed close relatedness with Papaya mosaic virus (PapMV), Alternathera mosaic virus (AltMV) and Senna mosaic virus (SenMV), exhibiting nucleotide identities up to 67% for the polymerase (Pol) and 68% for the coat protein (CP), with deduced amino acid identities of 70% and 72% for the Pol and CP, respectively. The presence of an AlkB domain, in the polymerase region, was observed. Terminal nucleotide sequences were conserved across potexviruses with characteristic motifs and predicted secondary structures at the 3' UTR. Although serologically undistinguishable from PapMV and AltMV, the new virus showed differences in host range and symptom induction. The name babaco mosaic virus is proposed for this newly characterized Potexvirus. The complete genome sequence of the new virus has been deposited in NCBI GenBank under accession number MF978248.


Assuntos
Magnoliopsida/virologia , Potexvirus/genética , Genes Virais , Especificidade de Hospedeiro , Filogenia , Potexvirus/isolamento & purificação , Análise de Sequência de DNA , Proteínas Virais/genética , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...