Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 110(1): 4-21, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30476167

RESUMO

Members of the cactus family are keystone species of arid and semiarid biomes in the Americas, as they provide shelter and resources to support other members of ecosystems. Extraordinary examples are the several species of flies of the genus Drosophila that lay eggs and feed in their rotting stems, which provide a model system for studying evolutionary processes. Although there is significant progress in understanding the evolution of Drosophila species, there are gaps in our knowledge about the cactus lineages hosting them. Here, we review the current knowledge about the evolution of Cactaceae, focusing on phylogenetic relationships and trends revealed by the study of DNA sequence data. During the last several decades, the availability of molecular phylogenies has considerably increased our understanding of the relationships, biogeography, and evolution of traits in the family. Remarkably, although succulent cacti have very low growth rates and long generation times, they underwent some of the fastest diversifications observed in the plant kingdom, possibly fostered by strong ecological interactions. We have a better understanding of the reproductive biology, population structure and speciation mechanisms in different clades. The recent publication of complete genomes for some species has revealed the importance of phenomena such as incomplete lineage sorting. Hybridization and polyploidization are common in the family, and have been studied using a variety of phylogenetic methods. We discuss potential future avenues for research in Cactaceae, emphasizing the need of a concerted effort among scientists in the Americas, together with the analyses of data from novel sequencing techniques.


Assuntos
Evolução Biológica , Cactaceae/genética , Animais , DNA de Plantas , Genômica , Filogenia , Filogeografia
2.
PLoS One ; 12(4): e0175905, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426818

RESUMO

Historic demography changes of plant species adapted to New World arid environments could be consistent with either the Glacial Refugium Hypothesis (GRH), which posits that populations contracted to refuges during the cold-dry glacial and expanded in warm-humid interglacial periods, or with the Interglacial Refugium Hypothesis (IRH), which suggests that populations contracted during interglacials and expanded in glacial times. These contrasting hypotheses are developed in the present study for the giant columnar cactus Cephalocereus columna-trajani in the intertropical Mexican drylands where the effects of Late Quaternary climatic changes on phylogeography of cacti remain largely unknown. In order to determine if the historic demography and phylogeographic structure of the species are consistent with either hypothesis, sequences of the chloroplast regions psbA-trnH and trnT-trnL from 110 individuals from 10 populations comprising the full distribution range of this species were analysed. Standard estimators of genetic diversity and structure were calculated. The historic demography was analysed using a Bayesian approach and the palaeodistribution was derived from ecological niche modelling to determine if, in the arid environments of south-central Mexico, glacial-interglacial cycles drove the genetic divergence and diversification of this species. Results reveal low but statistically significant population differentiation (FST = 0.124, P < 0.001), although very clear geographic clusters are not formed. Genetic diversity, haplotype network and Approximate Bayesian Computation (ABC) demographic analyses suggest a population expansion estimated to have taken place in the Last Interglacial (123.04 kya, 95% CI 115.3-130.03). The species palaeodistribution is consistent with the ABC analyses and indicates that the potential area of palaedistribution and climatic suitability were larger during the Last Interglacial and Holocene than in the Last Glacial Maximum. Overall, these results suggest that C. columna-trajani experienced an expansion following the warm conditions of interglacials, in accordance with the GRH.


Assuntos
Cactaceae/classificação , Ecossistema , Cactaceae/genética , Cactaceae/fisiologia , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Genes de Plantas , Haplótipos , México , Modelos Teóricos , Fotossíntese , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...