Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 792, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951693

RESUMO

The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.


Assuntos
Búfalos , Genoma , Genômica , Búfalos/genética , Animais , Genômica/métodos , Fluxo Gênico , África Subsaariana , Genética Populacional , Filogenia , Variação Genética
2.
BMC Public Health ; 24(1): 342, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302879

RESUMO

BACKGROUND: Strengthening the surveillance of zoonotic diseases emergence in the wild meat value chains is a critical component of the prevention of future health crises. Community hunters could act as first-line observers in zoonotic pathogens surveillance systems in wildlife, by reporting early signs of the possible presence of a disease in the game animals they observe and manipulate on a regular basis. METHODS: An experimental game was developed and implemented in a forested area of Gabon, in central Africa. Our objective was to improve our understanding of community hunters' decision-making when finding signs of zoonotic diseases in game animals: would they report or dissimulate these findings to a health agency? 88 hunters, divided into 9 groups of 5 to 13 participants, participated in the game, which was run over 21 rounds. In each round the players participated in a simulated hunting trip during which they had a chance of capturing a wild animal displaying clinical signs of a zoonotic disease. When signs were visible, players had to decide whether to sell/consume the animal or to report it. The last option implied a lowered revenue from the hunt but an increased probability of early detection of zoonotic diseases with benefits for the entire group of hunters. RESULTS: The results showed that false alerts-i.e. a suspect case not caused by a zoonotic disease-led to a decrease in the number of reports in the next round (Odds Ratio [OR]: 0.46, 95% Confidence Interval [CI]: 0.36-0.8, p < 0.01). Hunters who had an agricultural activity in addition to hunting reported suspect cases more often than others (OR: 2.05, 95% CI: 1.09-3.88, p < 0.03). The number of suspect case reports increased with the rank of the game round (Incremental OR: 1.11, CI: 1.06-1.17, p < 0.01) suggesting an increase in participants' inclination to report throughout the game. CONCLUSION: Using experimental games presents an added value for improving the understanding of people's decisions to participate in health surveillance systems.


Assuntos
Animais Selvagens , Zoonoses , Animais , Humanos , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Carne , Probabilidade , Jogos Experimentais
3.
Animals (Basel) ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255400

RESUMO

The duiker community in Central African rainforests includes a diversity of species that can coexist in the same area. The study of their activity patterns is needed to better understand habitat use or association between the species. Using camera traps, we studied the temporal activity patterns, and quantified for the first time the temporal overlap and spatial co-occurrence between species. Our results show that: (i) Two species are strongly diurnal: Cephalophus leucogaster, and Philantomba congica, (ii) two species are mostly diurnal: C.callipygus and C. nigrifrons, (iii) one species is strongly nocturnal: C.castaneus, (iv) and one species is mostly nocturnal: C.silvicultor. Analyses of temporal activities (for five species) identified four species pairs that highly overlapped (Δ^≥ 0.80), and six pairs that weakly overlapped (Δ^ between 0.06 and 0.35). Finally, co-occurrence tests reveal a truly random co-occurrence (plt > 0.05 and pgt > 0.05) for six species pairs, and a positive co-occurrence (pgt < 0.05) for four pairs. Positive co-occurrences are particularly noted for pairs formed by C.callipygus with the other species (except C. nigrifrons). These results are essential for a better understanding of the coexistence of duikers and the ecology of poorly known species (C. leucogaster and C. nigrifrons), and provide clarification on the activity patterns of C. silvicultor which was subject to controversy. Camera traps proved then to be a powerful tool for studying the activity patterns of free-ranging duiker populations.

4.
Ecol Evol ; 10(17): 9240-9256, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953058

RESUMO

Fission-fusion dynamics allow animals to manage costs and benefits of group living by adjusting group size. The degree of intraspecific variation in fission-fusion dynamics across the geographical range is poorly known. During 2008-2016, 38 adult female Cape buffalo were equipped with GPS collars in three populations located in different protected areas (Gonarezhou National Park and Hwange National Park, Zimbabwe; Kruger National Park, South Africa) to investigate the patterns and environmental drivers of fission-fusion dynamics among populations. We estimated home range overlap and fission and fusion events between Cape buffalo dyads. We investigated the temporal dynamics of both events at daily and seasonal scales and examined the influence of habitat and distance to water on event location. Fission-fusion dynamics were generally consistent across populations: Fission and fusion periods lasted on average between less than one day and three days. However, we found seasonal differences in the underlying patterns of fission and fusion, which point out the likely influence of resource availability and distribution in time on group dynamics: During the wet season, Cape buffalo split and associated more frequently and were in the same or in a different subgroup for shorter periods. Cape buffalo subgroups were more likely to merge than to split in open areas located near water, but overall vegetation and distance to water were very poor predictors of where fission and fusion events occurred. This study is one of the first to quantify fission-fusion dynamics in a single species across several populations with a common methodology, thus robustly questioning the behavioral flexibility of fission-fusion dynamics among environments.

5.
Front Vet Sci ; 4: 198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250528

RESUMO

Wild boars and domestic pigs belong to the same species (Sus scrofa). When sympatric populations of wild boars, feral pigs, and domestic pigs share the same environment, interactions between domestic and wild suids (IDWS) are suspected to facilitate the spread and maintenance of several pig pathogens which can impact on public health and pig production. However, information on the nature and factors facilitating those IDWS are rarely described in the literature. In order to understand the occurrence, nature, and the factors facilitating IDWS, a total of 85 semi-structured interviews were implemented face to face among 25 strict farmers, 20 strict hunters, and 40 hunting farmers in the main traditional pig-farming regions of Corsica, where IDWS are suspected to be common and widespread. Different forms of IDWS were described: those linked with sexual attraction of wild boars by domestic sows (including sexual interactions and fights between wild and domestic boars) were most frequently reported (by 61 and 44% of the respondents, respectively) in the autumn months and early winter. Foraging around common food or water was equally frequent (reported by 60% of the respondents) but spread all along the year except in winter. Spatially, IDWS were more frequent in higher altitude pastures were pig herds remain unattended during summer and autumn months with limited human presence. Abandonment of carcasses and carcass offal in the forest were equally frequent and efficient form of IDWS reported by 70% of the respondents. Certain traditional practices already implemented by hunters and farmers had the potential to mitigate IDWS in the local context. This study provided quantitative evidence of the nature of different IDWS in the context of extensive commercial outdoor pig farming in Corsica and identified their spatial and temporal trends. The identification of those trends is useful to target suitable times and locations to develop further ecological investigations of IDWS at a finer scale in order to better understand diseases transmission patterns between populations and promote adapted management strategies.

6.
Environ Monit Assess ; 188(7): 437, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27350287

RESUMO

Established in the early 1970 as a participatory wildlife production area, the Nazinga Game Ranch turned into an island of conservation surrounded by cultivation. We asked ourselves how long-term ungulate trends are affected in a context of continuous human pressure. To find out, we compiled and analysed the data of yearly line-transect counts of mammals carried out since 1985. Results showed that large species such as the elephant (Loxodonta africana) and large antelopes increased or showed stable populations. In contrast, medium and small ungulates showed continuously decreasing trends. During the same period, rainfall, water availability from artificial water points and the crop encroaching outside Nazinga Game Ranch increased. After an initial significant reduction, illegal human signs increased. However, we showed that human signs were positively correlated with the abundance of large ungulates but negatively correlated with the abundance of medium and small ones. In conclusion, this study showed that some isolated mammal populations could be restored and maintained in the long term, in spite of being surrounded by highly cultivated areas.


Assuntos
Animais Selvagens/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Elefantes/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Gossypium/crescimento & desenvolvimento , Ruminantes/crescimento & desenvolvimento , Animais , Burkina Faso , Humanos , Dinâmica Populacional , Recreação
7.
Emerg Infect Dis ; 22(2): 277-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26812531

RESUMO

We report on the long-distance movements of subadult female buffalo within a Transfrontier Conservation Area in Africa. Our observations confirm that bovine tuberculosis and other diseases can spread between buffalo populations across national parks, community land, and countries, thus posing a risk to animal and human health in surrounding wildlife areas.


Assuntos
Migração Animal , Búfalos , Zoonoses/epidemiologia , Zoonoses/etiologia , África Austral , Animais , Bovinos , Feminino , Geografia , Humanos , Masculino , Risco
9.
Appl Environ Microbiol ; 82(5): 1459-1467, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26712551

RESUMO

At a human/livestock/wildlife interface, Escherichia coli populations were used to assess the risk of bacterial and antibiotic resistance dissemination between hosts. We used phenotypic and genotypic characterization techniques to describe the structure and the level of antibiotic resistance of E. coli commensal populations and the resistant Enterobacteriaceae carriage of sympatric African buffalo (Syncerus caffer caffer) and cattle populations characterized by their contact patterns in the southern part of Hwange ecosystem in Zimbabwe. Our results (i) confirmed our assumption that buffalo and cattle share similar phylogroup profiles, dominated by B1 (44.5%) and E (29.0%) phylogroups, with some variability in A phylogroup presence (from 1.9 to 12%); (ii) identified a significant gradient of antibiotic resistance from isolated buffalo to buffalo in contact with cattle and cattle populations expressed as the Murray score among Enterobacteriaceae (0.146, 0.258, and 0.340, respectively) and as the presence of tetracycline-, trimethoprim-, and amoxicillin-resistant subdominant E. coli strains (0, 5.7, and 38%, respectively); (iii) evidenced the dissemination of tetracycline, trimethoprim, and amoxicillin resistance genes (tet, dfrA, and blaTEM-1) in 26 isolated subdominant E. coli strains between nearby buffalo and cattle populations, that led us (iv) to hypothesize the role of the human/animal interface in the dissemination of genetic material from human to cattle and toward wildlife. The study of antibiotic resistance dissemination in multihost systems and at anthropized/natural interface is necessary to better understand and mitigate its multiple threats. These results also contribute to attempts aiming at using E. coli as a tool for the identification of pathogen transmission pathway in multihost systems.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bovinos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Variação Genética , Genótipo , Humanos , Filogenia , Zimbábue/epidemiologia
10.
BMC Evol Biol ; 14: 203, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25367154

RESUMO

BACKGROUND: African wildlife experienced a reduction in population size and geographical distribution over the last millennium, particularly since the 19th century as a result of human demographic expansion, wildlife overexploitation, habitat degradation and cattle-borne diseases. In many areas, ungulate populations are now largely confined within a network of loosely connected protected areas. These metapopulations face gene flow restriction and run the risk of genetic diversity erosion. In this context, we assessed the "genetic health" of free ranging southern African Cape buffalo populations (S.c. caffer) and investigated the origins of their current genetic structure. The analyses were based on 264 samples from 6 southern African countries that were genotyped for 14 autosomal and 3 Y-chromosomal microsatellites. RESULTS: The analyses differentiated three significant genetic clusters, hereafter referred to as Northern (N), Central (C) and Southern (S) clusters. The results suggest that splitting of the N and C clusters occurred around 6000 to 8400 years ago. Both N and C clusters displayed high genetic diversity (mean allelic richness (A r ) of 7.217, average genetic diversity over loci of 0.594, mean private alleles (P a ) of 11), low differentiation, and an absence of an inbreeding depression signal (mean F IS = 0.037). The third (S) cluster, a tiny population enclosed within a small isolated protected area, likely originated from a more recent isolation and experienced genetic drift (F IS = 0.062, mean A r = 6.160, P a = 2). This study also highlighted the impact of translocations between clusters on the genetic structure of several African buffalo populations. Lower differentiation estimates were observed between C and N sampling localities that experienced translocation over the last century. CONCLUSIONS: We showed that the current genetic structure of southern African Cape buffalo populations results from both ancient and recent processes. The splitting time of N and C clusters suggests that the current pattern results from human-induced factors and/or from the aridification process that occurred during the Holocene period. The more recent S cluster genetic drift probably results of processes that occurred over the last centuries (habitat fragmentation, diseases). Management practices of African buffalo populations should consider the micro-evolutionary changes highlighted in the present study.


Assuntos
Búfalos/genética , África Austral , Animais , Evolução Biológica , Cromossomos de Mamíferos , Conservação dos Recursos Naturais , Ecossistema , Fluxo Gênico , Deriva Genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Cromossomo Y
11.
PLoS One ; 8(2): e56235, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437100

RESUMO

The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today.


Assuntos
Búfalos/genética , Variação Genética , África , Animais , Teorema de Bayes , Búfalos/anatomia & histologia , DNA Mitocondrial/genética , Feminino , Genética Populacional , Geografia , Haplótipos/genética , Modelos Biológicos , Conformação de Ácido Nucleico , Filogenia , Probabilidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...