Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17696, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776395

RESUMO

Microbeam Radiation Therapy (MRT) is an emerging cancer treatment modality characterised by the use of high-intensity synchrotron-generated x-rays, spatially fractionated by a multi-slit collimator (MSC), to ablate target tumours. The implementation of an accurate treatment planning system, coupled with simulation tools that allow for independent verification of calculated dose distributions are required to ensure optimal treatment outcomes via reliable dose delivery. In this article we present data from the first Geant4 Monte Carlo radiation transport model of the Imaging and Medical Beamline at the Australian Synchrotron. We have developed the model for use as an independent verification tool for experiments in one of three MRT delivery rooms and therefore compare simulation results with equivalent experimental data. The normalised x-ray spectra produced by the Geant4 model and a previously validated analytical model, SPEC, showed very good agreement using wiggler magnetic field strengths of 2 and 3 T. However, the validity of absolute photon flux at the plane of the Phase Space File (PSF) for a fixed number of simulated electrons was unable to be established. This work shows a possible limitation of the G4SynchrotronRadiation process to model synchrotron radiation when using a variable magnetic field. To account for this limitation, experimentally derived normalisation factors for each wiggler field strength determined under reference conditions were implemented. Experimentally measured broadbeam and microbeam dose distributions within a Gammex RMI457 Solid Water® phantom were compared to simulated distributions generated by the Geant4 model. Simulated and measured broadbeam dose distributions agreed within 3% for all investigated configurations and measured depths. Agreement between the simulated and measured microbeam dose distributions agreed within 5% for all investigated configurations and measured depths.


Assuntos
Simulação por Computador , Fracionamento da Dose de Radiação , Método de Monte Carlo , Radioterapia Assistida por Computador/instrumentação , Radioterapia Assistida por Computador/métodos , Síncrotrons/instrumentação , Elétrons , Humanos , Campos Magnéticos , Imagens de Fantasmas , Fótons , Software , Raios X
2.
Med Phys ; 32(1): 37-41, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15719952

RESUMO

Many new techniques for delivering radiation therapy are being developed for the treatment of cancer. One of these, proton therapy, is becoming increasingly popular because of the precise way in which protons deliver dose to the tumor volume. In order to achieve this level of precision, extensive treatment planning needs to be carried out to determine the optimum beam energies, energy spread (which determines the width of the spread-out Bragg peak), and angles for each patient's treatment. Due to the level of precision required and advancements in computer technology, there is increasing interest in the use of Monte Carlo calculations for treatment planning in proton therapy. However, in order to achieve optimum simulation times, nonelastic nuclear interactions between protons and the target nucleus within the patient's internal structure are often not accounted for or are simulated using less accurate models such as analytical or ray tracing. These interactions produce high LET particles such as neutrons, alpha particles, and recoil protons, which affect the dose distribution and biological effectiveness of the beam. This situation has prompted an investigation of the importance of nonelastic products on depth dose distributions within various materials including water, A-150 tissue equivalent plastic, ICRP (International Commission on Radiological Protection) muscle, ICRP bone, and ICRP adipose. This investigation was conducted utilizing the GEANT4.5.2 Monte Carlo hadron transport toolkit.


Assuntos
Neoplasias/radioterapia , Prótons , Radiometria/métodos , Tecido Adiposo/efeitos da radiação , Partículas alfa , Osso e Ossos/efeitos da radiação , Simulação por Computador , Humanos , Método de Monte Carlo , Músculos/efeitos da radiação , Nêutrons , Imagens de Fantasmas , Software , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...