Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 230(10): 2543-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25846724

RESUMO

Statins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol-lowering and anti-atherosclerotic properties. Although some statin patients may experience muscle-related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first-pass metabolism in the liver. Skeletal muscles appear to be the main site of side effects; however, recently some statin-related adverse effects have been described in tendon. The mechanism behind these side effects remains unknown. This is the first study that explores tendon-specific effects of statins in human primary tenocytes. The cells were cultured with different concentrations of lovastatin for up to 1 week. No changes in cell viability or morphology were observed in tenocytes incubated with therapeutic doses. Short-term exposure to lovastatin concentrations outside the therapeutic range had no effect on tenocyte viability; however, cell migration was reduced. Simvastatin and atorvastatin, two other drug family members, also reduced the migratory properties of the cells. Prolonged exposure to high concentrations of lovastatin induced changes in cytoskeleton leading to cell rounding and decreased levels of mRNA for matrix proteins, but increased BMP-2 expression. Gap junctional communication was impaired but due to cell shape change and separation rather than direct gap junction inhibition. These effects were accompanied by inhibition of prenylation of Rap1a small GTPase. Collectively, we showed that statins in a dose-dependent manner decrease migration of human tendon cells, alter their expression profile and impair the functional network, but do not inhibit gap junction function.


Assuntos
Citoesqueleto/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Tendões/efeitos dos fármacos , Atorvastatina , Colesterol/metabolismo , Citoesqueleto/metabolismo , Ácidos Heptanoicos/farmacologia , Humanos , Pirróis/farmacologia , Sinvastatina/farmacologia , Tendões/metabolismo
2.
Adv Orthop ; 2012: 984950, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23304533

RESUMO

Degenerate shoulder tendons display evidence of hypoxia. However tendons are relatively avascular and not considered to have high oxygen requirements and the vulnerability of tendon cells to hypoxia is unclear. Cultured human tenocytes were exposed to hypoxia and the cellular response detected using QPCR, Western blotting, viability, and ELISA assays. We find that tenocytes respond to hypoxia in vitro by activating classical HIF-1α-driven pathways. Total hypoxia caused significant tenocyte apoptosis. Transcription factors typically involved in hypoxic response, HIF-1α and FOXO3A, were upregulated. Hypoxia caused sustained upregulation of several proapoptotic proteins known to mediate hypoxia-induced apoptosis, such as Bnip3 and Nix, but others were unchanged although they were reportedly hypoxia-sensitive in other cell types. Antiapoptotic proteins Bcl2 and Bcl-xL were unchanged by hypoxia. Normal human tenocytes expressed all isoforms of the hypoxia-induced vascular growth factor VEGF except VEGF-D. Hypoxia markedly upregulated VEGF-A mRNA, followed by increased VEGF protein secretion. However treatment with VEGF did not improve tenocyte survival. As a protective strategy for tenocytes at risk of hypoxic death we added prosurvival growth factors insulin or platelet rich plasma (PRP). Both agents strongly protected tenocytes from hypoxia-induced death over 48 h, suggesting possible efficacy in the acute postrupture tendon or integrating graft.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...