Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574067

RESUMO

BACKGROUND: Canonical α/ß T-cell receptors (TCRs) bind to human leukocyte antigen (HLA) displaying antigenic peptides to elicit T cell-mediated cytotoxicity. TCR-engineered T-cell immunotherapies targeting cancer-specific peptide-HLA complexes (pHLA) are generating exciting clinical responses, but owing to HLA restriction they are only able to target a subset of antigen-positive patients. More recently, evidence has been published indicating that naturally occurring α/ß TCRs can target cell surface proteins other than pHLA, which would address the challenges of HLA restriction. In this proof-of-concept study, we sought to identify and engineer so-called HLA-independent TCRs (HiTs) against the tumor-associated antigen mesothelin. METHODS: Using phage display, we identified a HiT that bound well to mesothelin, which when expressed in primary T cells, caused activation and cytotoxicity. We subsequently engineered this HiT to modulate the T-cell response to varying levels of mesothelin on the cell surface. RESULTS: The isolated HiT shows cytotoxic activity and demonstrates killing of both mesothelin-expressing cell lines and patient-derived xenograft models. Additionally, we demonstrated that HiT-transduced T cells do not require CD4 or CD8 co-receptors and, unlike a TCR fusion construct, are not inhibited by soluble mesothelin. Finally, we showed that HiT-transduced T cells are highly efficacious in vivo, completely eradicating xenografted human solid tumors. CONCLUSION: HiTs can be isolated from fully human TCR-displaying phage libraries against cell surface-expressed antigens. HiTs are able to fully activate primary T cells both in vivo and in vitro. HiTs may enable the efficacy seen with pHLA-targeting TCRs in solid tumors to be translated to cell surface antigens.


Assuntos
Mesotelina , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade/metabolismo
2.
J Immunol ; 208(1): 169-180, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853077

RESUMO

Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-ß, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-ß. Truncating the intracellular signaling domain from TGF-ß receptor (TGFßR) II produces a dominant-negative receptor (dnTGFßRII) that dimerizes with endogenous TGFßRI to form a receptor that can bind TGF-ß but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-ß inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFßRII (e.g., GSK3845097). TGF-ß isoforms and a panel of TGF-ß-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-ß-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFßRII may therefore improve the efficacy of TCR-transduced T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/terapia , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Melanoma/terapia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Sarcoma Sinovial/terapia , Fator de Crescimento Transformador beta/metabolismo , Antígenos de Neoplasias/imunologia , Carcinoma de Células Escamosas/imunologia , Linhagem Celular Tumoral , Engenharia Genética , Antígeno HLA-A2/metabolismo , Neoplasias Hematológicas/imunologia , Humanos , Tolerância Imunológica , Melanoma/imunologia , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Sarcoma Sinovial/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Microambiente Tumoral
3.
Oncoimmunology ; 9(1): 1682381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002290

RESUMO

A substantial obstacle to the success of adoptive T cell-based cancer immunotherapy is the sub-optimal affinity of T-cell receptors (TCRs) for most tumor antigens. Genetically engineered TCRs that have enhanced affinity for specific tumor peptide-MHC complexes may overcome this barrier. However, this enhancement risks increasing weak TCR cross-reactivity to other antigens expressed by normal tissues, potentially leading to clinical toxicities. To reduce the risk of such adverse clinical outcomes, we have developed an extensive preclinical testing strategy, involving potency testing using 2D and 3D human cell cultures and primary tumor material, and safety testing using human primary cell and cell-line cross-reactivity screening and molecular analysis to predict peptides recognized by the affinity-enhanced TCR. Here, we describe this strategy using a developmental T-cell therapy, ADP-A2M4, which recognizes the HLA-A2-restricted MAGE-A4 peptide GVYDGREHTV. ADP-A2M4 demonstrated potent anti-tumor activity in the absence of major off-target cross-reactivity against a range of human primary cells and cell lines. Identification and characterization of peptides recognized by the affinity-enhanced TCR also revealed no cross-reactivity. These studies demonstrated that this TCR is highly potent and without major safety concerns, and as a result, this TCR is now being investigated in two clinical trials (NCT03132922, NCT04044768).


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
4.
Toxicol In Vitro ; 46: 29-38, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28919358

RESUMO

Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Substâncias Perigosas/toxicidade , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450 , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Substâncias Perigosas/administração & dosagem , Substâncias Perigosas/metabolismo , Hepatócitos/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Consumo de Oxigênio , Regulação para Cima
5.
World J Gastroenterol ; 23(2): 204-215, 2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28127194

RESUMO

AIM: To develop a human in vitro model of non-alcoholic fatty liver disease (NAFLD), utilising primary hepatocytes cultured in a three-dimensional (3D) perfused platform. METHODS: Fat and lean culture media were developed to directly investigate the effects of fat loading on primary hepatocytes cultured in a 3D perfused culture system. Oil Red O staining was used to measure fat loading in the hepatocytes and the consumption of free fatty acids (FFA) from culture medium was monitored. Hepatic functions, gene expression profiles and adipokine release were compared for cells cultured in fat and lean conditions. To determine if fat loading in the system could be modulated hepatocytes were treated with known anti-steatotic compounds. RESULTS: Hepatocytes cultured in fat medium were found to accumulate three times more fat than lean cells and fat uptake was continuous over a 14-d culture. Fat loading of hepatocytes did not cause any hepatotoxicity and significantly increased albumin production. Numerous adipokines were expressed by fatty cells and genes associated with NAFLD and liver disease were upregulated including: Insulin-like growth factor-binding protein 1, fatty acid-binding protein 3 and CYP7A1. The metabolic activity of hepatocytes cultured in fatty conditions was found to be impaired and the activities of CYP3A4 and CYP2C9 were significantly reduced, similar to observations made in NAFLD patients. The utility of the model for drug screening was demonstrated by measuring the effects of known anti-steatotic compounds. Hepatocytes, cultured under fatty conditions and treated with metformin, had a reduced cellular fat content compared to untreated controls and consumed less FFA from cell culture medium. CONCLUSION: The 3D in vitro NAFLD model recapitulates many features of clinical NAFLD and is an ideal tool for analysing the efficacy of anti-steatotic compounds.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Hepatócitos/metabolismo , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Azo/administração & dosagem , Reatores Biológicos , Técnicas de Cultura de Células , Colesterol 7-alfa-Hidroxilase/metabolismo , Corantes/administração & dosagem , Criopreservação , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/enzimologia , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Perfusão , Cultura Primária de Células , Alicerces Teciduais , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...