Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Behav Med ; 13(6): 389-399, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36999823

RESUMO

Racial/ethnic minority, low socioeconomic status, and rural populations are disproportionately affected by COVID-19. Developing and evaluating interventions to address COVID-19 testing and vaccination among these populations are crucial to improving health inequities. The purpose of this paper is to describe the application of a rapid-cycle design and adaptation process from an ongoing trial to address COVID-19 among safety-net healthcare system patients. The rapid-cycle design and adaptation process included: (a) assessing context and determining relevant models/frameworks; (b) determining core and modifiable components of interventions; and (c) conducting iterative adaptations using Plan-Do-Study-Act (PDSA) cycles. PDSA cycles included: Plan. Gather information from potential adopters/implementers (e.g., Community Health Center [CHC] staff/patients) and design initial interventions; Do. Implement interventions in single CHC or patient cohort; Study. Examine process, outcome, and context data (e.g., infection rates); and, Act. If necessary, refine interventions based on process and outcome data, then disseminate interventions to other CHCs and patient cohorts. Seven CHC systems with 26 clinics participated in the trial. Rapid-cycle, PDSA-based adaptations were made to adapt to evolving COVID-19-related needs. Near real-time data used for adaptation included data on infection hot spots, CHC capacity, stakeholder priorities, local/national policies, and testing/vaccine availability. Adaptations included those to study design, intervention content, and intervention cohorts. Decision-making included multiple stakeholders (e.g., State Department of Health, Primary Care Association, CHCs, patients, researchers). Rapid-cycle designs may improve the relevance and timeliness of interventions for CHCs and other settings that provide care to populations experiencing health inequities, and for rapidly evolving healthcare challenges such as COVID-19.


Racial/ethnic minority, low socioeconomic status, and rural populations experience a disproportionate burden of COVID-19. Finding ways to address COVID-19 among these populations is crucial to improving health inequities. The purpose of this paper is to describe the rapid-cycle design process for a research project to address COVID-19 testing and vaccination among safety-net healthcare system patients. The project used real-time information on changes in COVID-19 policy (e.g., vaccination authorization), local case rates, and the capacity of safety-net healthcare systems to iteratively change interventions to ensure interventions were relevant and timely for patients. Key changes that were made to interventions included a change to the study design to include vaccination as a focus of the interventions after the vaccine was authorized; change in intervention content according to the capacity of local Community Health Centers to provide testing to patients; and changes to intervention cohorts such that priority groups of patients were selected for intervention based on characteristics including age, residency in an infection "hot spot," or race/ethnicity. Iteratively improving interventions based on real-time data collection may increase intervention relevance and timeliness, and rapid-cycle adaptions can be successfully implemented in resource constrained settings like safety-net healthcare systems.


Assuntos
COVID-19 , Etnicidade , Humanos , Teste para COVID-19 , Grupos Minoritários , COVID-19/prevenção & controle , Atenção à Saúde
2.
JAMIA Open ; 4(3): ooab041, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34345802

RESUMO

OBJECTIVE: To establish an enterprise initiative for improving health and health care through interoperable electronic health record (EHR) innovations. MATERIALS AND METHODS: We developed a unifying mission and vision, established multidisciplinary governance, and formulated a strategic plan. Key elements of our strategy include establishing a world-class team; creating shared infrastructure to support individual innovations; developing and implementing innovations with high anticipated impact and a clear path to adoption; incorporating best practices such as the use of Fast Healthcare Interoperability Resources (FHIR) and related interoperability standards; and maximizing synergies across research and operations and with partner organizations. RESULTS: University of Utah Health launched the ReImagine EHR initiative in 2016. Supportive infrastructure developed by the initiative include various FHIR-related tooling and a systematic evaluation framework. More than 10 EHR-integrated digital innovations have been implemented to support preventive care, shared decision-making, chronic disease management, and acute clinical care. Initial evaluations of these innovations have demonstrated positive impact on user satisfaction, provider efficiency, and compliance with evidence-based guidelines. Return on investment has included improvements in care; over $35 million in external grant funding; commercial opportunities; and increased ability to adapt to a changing healthcare landscape. DISCUSSION: Key lessons learned include the value of investing in digital innovation initiatives leveraging FHIR; the importance of supportive infrastructure for accelerating innovation; and the critical role of user-centered design, implementation science, and evaluation. CONCLUSION: EHR-integrated digital innovation initiatives can be key assets for enhancing the EHR user experience, improving patient care, and reducing provider burnout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...