Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556545

RESUMO

We numerically investigated the use of graphene nanoribbons placed on top of silicon-on-insulator (SOI) strip waveguides for light polarization control in silicon photonic-integrated waveguides. We found that two factors mainly affected the polarization control: the graphene chemical potential and the geometrical parameters of the waveguide, such as the waveguide and nanoribbon widths and distance. We show that the graphene chemical potential influences both TE and TM polarizations almost in the same way, while the waveguide width tapering enables both TE-pass and TM-pass polarizing functionalities. Overall, by increasing the oxide spacer thickness between the silicon waveguide and the top graphene layer, the device insertion losses can be reduced, while preserving a high polarization extinction ratio.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35889662

RESUMO

In this work, we show the design of a silicon photonic-based polarization converting device based on the integration of semiconduction InP nanowires on the silicon photonic platform. We present a comprehensive numerical analysis showing that full polarization conversion (from quasi-TE modes to quasi-TM modes, and vice versa) can be achieved in devices exhibiting small footprints (total device lengths below 20 µm) with minimal power loss (<2 dB). The approach described in this work can pave the way to the realization of complex and re-configurable photonic processors based on the manipulation of the state of polarization of guided light beams.

3.
Sensors (Basel) ; 20(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707648

RESUMO

Detectors of microwave photons find applications in different fields ranging from security to cosmology. Due to the intrinsic difficulties related to the detection of vanishingly small energy quanta ℏ ω , significant portions of the microwave electromagnetic spectrum are still uncovered by suitable techniques. No prevailing technology has clearly emerged yet, although different solutions have been tested in different contexts. Here, we focus on semiconductor quantum dots, which feature wide tunability by external gate voltages and scalability for large architectures. We discuss possible pathways for the development of microwave photon detectors based on photon-assisted tunneling in semiconducting double quantum dot circuits. In particular, we consider implementations based on either broadband transmission lines or resonant cavities, and we discuss how developments in charge sensing techniques and hybrid architectures may be beneficial for the development of efficient photon detectors in the microwave range.

4.
Sci Rep ; 9(1): 19523, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863018

RESUMO

With downscaling of electronic circuits, components based on semiconductor quantum dots are assuming increasing relevance for future technologies. Their response under external stimuli intrinsically depend on their quantum properties. Here we investigate single-electron tunneling in hard-wall InAs/InP nanowires in the presence of an off-resonant microwave drive. Our heterostructured nanowires include InAs quantum dots (QDs) and exhibit different tunnel-current regimes. In particular, for source-drain bias up to few mV Coulomb diamonds spread with increasing contrast as a function of microwave power and present multiple current polarity reversals. This behavior can be modelled in terms of voltage fluctuations induced by the microwave field and presents features that depend on the interplay of the discrete energy levels that contribute to the tunneling process.

5.
Dalton Trans ; 48(5): 1700-1708, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30623942

RESUMO

Three isostrucutral dodecanuclear clusters with the general formula [Ln12(fsa)12(µf3-OH)12(DMF)12]·nDMF (fsa2- is the dianion of 3-formylsalicylic acid; Ln = Eu 1, Gd 2, Dy 3) have been obtained from the reaction of fromylsalicyclic acid (H2fsa), tetrabutylammonium hydroxide and Ln(NO3)3·6H2O in methanol/DMF. Their structure consists of four vertex-sharing heterocubanes. Each heterocubane unit is assembled from four LnIII ions, three µ3-OH groups and one µ3-oxygen atom arising from the fsa2- carboxylato group. The photophysical properties of the europium derivative investigated at both 300 and 80 K sustain a relative intense emission obtained under low power LED excitation at 420 nm. The dysprosium derivative shows a SMM behavior with an effective energy barrier Ueff of 22.9 cm-1, while the thermodynamical properties of Gd12 confirm a large magnetocaloric effect: S(7 T) - S(0 T) = 20R = 166 J mol-1 K), typical for isotropic GdIII derivatives, with ΔS = S(7 T) - S(0 T) = 1.7R for each GdIII ion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...