Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 7, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599846

RESUMO

This paper presents a collection of environmental, geophysical, and other marine-related data for marine ecological models and ecological-niche models. It consists of 2132 raster data for 58 distinct parameters at regional and global scales in the ESRI-GRID ASCII format. Most data originally belonged to open data owned by the authors of this article but residing on heterogeneous repositories with different formats and resolutions. Other data were specifically created for the present publication. The collection includes 565 data with global scale range; 154 at 0.5° resolution and 411 at 0.1° resolution; 196 data with annual temporal aggregation over ~10 key years between 1950 and 2100; 369 data with monthly aggregation at 0.1° resolution from January 2017 to ~May 2021 continuously. Data were also cut out on 8 European marine regions. The collection also includes forecasts for different future scenarios such as the Representative Concentration Pathways 2.6 (63 data), 4.5 (162 data), and 8.5 (162 data), and the A2 scenario of the Intergovernmental Panel on Climate Change (180 data).

2.
Ecol Inform ; 69: 101675, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35615467

RESUMO

The COVID-19 pandemic has led to reduced anthropogenic pressure on ecosystems in several world areas, but resulting ecosystem responses in these areas have not been investigated. This paper presents an approach to make quick assessments of potential habitat changes in 2020 of eight marine species of commercial importance in the Adriatic Sea. Measurements from floating probes are interpolated through an advection-equation based model. The resulting distributions are then combined with species observations through an ecological niche model to estimate habitat distributions in the past years (2015-2018) at 0.1° spatial resolution. Habitat patterns over 2019 and 2020 are then extracted and explained in terms of specific environmental parameter changes. These changes are finally assessed for their potential dependency on climate change patterns and anthropogenic pressure change due to the pandemic. Our results demonstrate that the combined effect of climate change and the pandemic could have heterogeneous effects on habitat distributions: three species (Squilla mantis, Engraulis encrasicolus, and Solea solea) did not show significant niche distribution change; habitat suitability positively changed for Sepia officinalis, but negatively for Parapenaeus longirostris, due to increased temperature and decreasing dissolved oxygen (in the Adriatic) generally correlated with climate change; the combination of these trends with an average decrease in chlorophyll, probably due to the pandemic, extended the habitat distributions of Merluccius merluccius and Mullus barbatus but reduced Sardina pilchardus distribution. Although our results are based on approximated data and reliable at a macroscopic level, we present a very early insight of modifications that will possibly be observed years after the end of the pandemic when complete data will be available. Our approach is entirely based on Findable, Accessible, Interoperable, and Reusable (FAIR) data and is general enough to be used for other species and areas.

3.
Sci Rep ; 12(1): 1052, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058546

RESUMO

The COVID-19 pandemic provides a major opportunity to study fishing effort dynamics and to assess the response of the industry to standard and remedial actions. Knowing a fishing fleet's capacity to compensate for effort reduction (i.e., its resilience) allows differentiating governmental regulations by fleet, i.e., imposing stronger restrictions on the more resilient and weaker restrictions on the less resilient. In the present research, the response of the main fishing fleets of the Adriatic Sea to fishing hour reduction from 2015 to 2020 was measured. Fleet activity per gear type was inferred from monthly Automatic Identification System data. Pattern recognition techniques were applied to study the fishing effort trends and barycentres by gear. The beneficial effects of the lockdowns on Adriatic endangered, threatened and protected (ETP) species were also estimated. Finally, fleet effort series were examined through a stock assessment model to demonstrate that every Adriatic fishing fleet generally behaves like a stock subject to significant stress, which was particularly highlighted by the pandemic. Our findings lend support to the notion that the Adriatic fleets can be compared to predators with medium-high resilience and a generally strong impact on ETP species.


Assuntos
COVID-19 , Pesqueiros/economia , Modelos Econômicos , Pandemias/economia , Quarentena/economia , SARS-CoV-2 , COVID-19/economia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos
4.
Ecol Modell ; 431: 109187, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834369

RESUMO

COVID-19 pandemic is a global threat to human health and economy that requires urgent prevention and monitoring strategies. Several models are under study to control the disease spread and infection rate and to detect possible factors that might favour them, with a focus on understanding the correlation between the disease and specific geophysical parameters. However, the pandemic does not present evident environmental hindrances in the infected countries. Nevertheless, a lower rate of infections has been observed in some countries, which might be related to particular population and climatic conditions. In this paper, infection rate of COVID-19 is modelled globally at a 0.5∘ resolution, using a Maximum Entropy-based Ecological Niche Model that identifies geographical areas potentially subject to a high infection rate. The model identifies locations that could favour infection rate due to their particular geophysical (surface air temperature, precipitation, and elevation) and human-related characteristics (CO 2 and population density). It was trained by facilitating data from Italian provinces that have reported a high infection rate and subsequently tested using datasets from World countries' reports. Based on this model, a risk index was calculated to identify the potential World countries and regions that have a high risk of disease increment. The distribution outputs foresee a high infection rate in many locations where real-world disease outbreaks have occurred, e.g. the Hubei province in China, and reports a high risk of disease increment in most World countries which have reported significant outbreaks (e.g. Western U.S.A.). Overall, the results suggest that a complex combination of the selected parameters might be of integral importance to understand the propagation of COVID-19 among human populations, particularly in Europe. The model and the data were distributed through Open-science Web services to maximise opportunities for re-usability regarding new data and new diseases, and also to enhance the transparency of the approach and results.

5.
Data Brief ; 17: 292-296, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876396

RESUMO

Many research communities working in biology and related fields are deeply interested in having a wide collection of environmental and species distribution data. Obviously, for these communities to be able to carry out their studies in a fast and efficient manner, these data need to be well organized, meticulously described and possibly represented in a standard format that allows for a direct usage. In fact, being the final goal of these communities to extract information from the data and applying some kind of data processing workflows, cutting down the data preparation and preprocessing time is key. This is the main reason that triggered the activity presented in this paper that aimed at converting the whole collection of 10,385 species distribution models published by the Aquamaps consortium (Aquamaps Native Distributions) into NetCDF files, creating a re-usable, portable and self-describing collection of native habitat datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...