Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 24(1): 10, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093137

RESUMO

BACKGROUND: Breast cancer can recur months to decades after an initial diagnosis and treatment. The mechanisms that control tumor cell dormancy remain poorly understood, making it difficult to predict which patients will recur and thus benefit from more rigorous screening and treatments. Unfortunately, the extreme rarity of dormant DTCs has been a major obstacle to their study. METHODS: To overcome this challenge, we developed an efficient system to isolate and study rare dormant breast cancer cells from metastatic organs including bones, which represent a major site of metastasis. After isolation of cells from the long bones, we used single cell RNA-sequencing (scRNA-seq) to profile proliferative and dormant PyMT-Bo1 breast cancer cells. We also compared this signature to dormant versus proliferative tumor cells isolated from the lungs. Finally, we compared our dormant signature to human datasets. RESULTS: We identified a group of genes including Cfh, Gas6, Mme and Ogn that were highly expressed in dormant breast cancer cells present in the bone and lung. Expression of these genes had no impact on dormancy in murine models, but their expression correlated with disease-free survival in primary human breast cancer tumors, suggesting that these genes have predictive value in determining which patients are likely to recur. CONCLUSIONS: Dormant breast cancer cells exhibit a distinct gene expression signature regardless of metastatic site. Genes enriched in dormant breast cancer cells correlate with recurrence-free survival in breast cancer patients.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Humanos , Camundongos , Recidiva Local de Neoplasia , Fenótipo
2.
Nat Commun ; 12(1): 2444, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953184

RESUMO

Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.


Assuntos
Doenças Ósseas/genética , Homeostase , Osteócitos/metabolismo , Transcriptoma , Fatores Etários , Animais , Doenças Ósseas/metabolismo , Osso e Ossos/metabolismo , Biologia Computacional , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteócitos/citologia , Osteoporose/genética , Análise de Sequência de RNA , Fatores Sexuais
3.
Blood ; 134(1): 30-43, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023703

RESUMO

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco/genética , Animais , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transcriptoma , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...