Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Biosci ; 51: 102348, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36597499

RESUMO

The COVID-19 pandemic has substantially impacted the world health systems, causing public health concerns, and the search for new compounds with antiviral activity is of extreme interest. Natural molecules with bioactive potential are a trend, with essential oils (Eos) being the focus of recent studies. Thus, this study evaluates in chemico the d-limonene inhibitory activities in the viral genome of SARS-CoV-2 and analyzes the cytotoxic potential and safety profile of d-limonene and lime and orange EOs with a high content of d-limonene. The EOs were extracted and characterized, and the in chemico computational analysis for the determination as a potential anti-SARS-CoV-2 was performed with d-limonene, the major compound in EOs. The cytotoxicity analysis of EOs and d-limonene was carried out with MRC-5 and HaCaT, and the preliminary safety profile was also evaluated by the HET-CAM assay. d-limonene was suggested as a promising compound for anti-SARS-CoV-2 research, since the molecule does not provide mutagenic and cytotoxic fragments, and does not have irritating potential when diluted, in addition to having favorable pharmacokinetic characteristics, through in chemico analysis. Collectively, the results reveal the antiviral potential of lime and orange EOs, as well as their major compound. In this sense, further studies should be conducted to understand the antiviral mechanisms.

2.
Crit Rev Food Sci Nutr ; 63(27): 8960-8974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35416734

RESUMO

This review begins with a general introduction to essential oils (EO) and their relation to food and microorganisms. Classification and characteristics of EO, addressing the major compounds with antimicrobial action. Subsequently, the main microorganisms followed by a collection of the main works published in recent years that approached the influence of the EO on the protection against microorganisms and food decontamination. At last, the major gaps and future perspectives on the subject. Using EO for fighting food contamination is a way of sustainably supplying the need for new antimicrobials to ensure microbial safety and is a viable source to solve the problem of current microbial resistance. Form of application, EO composition and microbiological load are reported as the responsible factors for the treatment's success. The EO's effects on fungi and bacteria are already well known, but its effect on viruses and yeasts is something to be explored.


Assuntos
Óleos Voláteis , Vírus , Óleos Voláteis/farmacologia , Fungos , Leveduras , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA