Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1238779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860137

RESUMO

Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited.

2.
Front Microbiol ; 14: 1109549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744097

RESUMO

The genus Natronomonas is classified on the family Haloarculaceae, within the class Halobacteria and currently includes six species isolated from salterns, saline or soda lakes, and salt mines. All are extremely halophilic (optimal growth at 20-25% [w/v] NaCl) and neutrophilic, except Natronomonas pharaonis, the type species of the genus, that is haloalkaliphilic (showing optimal growth at pH 9.0) and possesses distinct phenotypic features, such as a different polar lipid profile than the rest of species of the genus. We have carried out a genome-based study in order to determine the phylogenetic structure of the genus Natronomonas and elucidate its current taxonomic status. Overall genomic relatedness indexes, i.e., OrthoANI (Average Nucleotide Identity), dDDH (digital DNA-DNA hybridization), and AAI (Average Amino acid Identity), were determined with respect to the species of Natronomonas and other representative taxa of the class Halobacteria. Our data show that the six species of Natronomonas constitute a coherent cluster at the genus level. Besides, we have characterized a new haloarchaeon, strain F2-12T, isolated from the brine of a pond of a saltern in Isla Cristina, Huelva, Spain, and we determined that it constitutes a new species of Natronomonas, for which we propose the name Natronomonas aquatica sp. nov. Besides, the metabolic analysis revealed a heterotrophic lifestyle and a versatile nitrogen metabolism for members of this genus. Finally, metagenomic fragment recruitments from a subset of hypersaline habitats, indicated that the species of Natronomonas are widely distributed in saline lakes and salterns as well as on saline soils. Species of this haloarchaeal genus can be considered as ubiquitous in intermediate to high salinity habitats.

3.
Front Microbiol ; 13: 1090197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687661

RESUMO

The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.

4.
Int J Syst Evol Microbiol ; 70(3): 1698-1705, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31971502

RESUMO

A comparative taxonomic study of Halorubrum distributum, Halorubrum terrestre, Halorubrum arcis and Halorubrum litoreum was carried out using different approaches, 16S rRNA gene sequence analysis, multilocus sequence analysis (MLSA), phylogenomic analysis based on the comparison of the core genome, orthologous average nucleotide identity (OrthoANI), Genome-to-Genome Distance Calculator (GGDC), synteny plots and polar lipid profile (PLP). The MLSA study, using the five concatenated housekeeping genes atpB, EF-2, glnA, ppsA and rpoB', and the phylogenomic analysis based on 1347 core translated gene sequences obtained from their genomes showed that Halorubrum distributum JCM 9100T, Halorubrum terrestre JCM 10247T, Halorubrum arcis JCM 13916T and Halorubrum litoreum JCM 13561T formed a robust cluster, clearly separated from the rest of species of the genus Halorubrum. The OrthoANI and digital DDH values, calculated by the GGDC, showed percentages among Hrr. distributum JCM 9100T, Hrr. terrestre JCM 10247T, Hrr. arcis JCM 13916T and Hrr. litoreum JCM 13561T that ranged from 98.1 to 97.5 %, and 84.0 to 78.0 %, respectively, while these values among those strains and the type strains of their most related species of Halorubrum were equal or lower than 90.8 and 41.2 %, respectively. Moreover, degree of synteny across the four genomes was very high, especially between the genomes of Halorubrum litoreum JCM 13561T and Halorubrum arcis JCM 13916T. In addition, the PLP is quite similar among the four strains studied, showing a common pattern typical of the neutrophilic species of the genus Halorubrum. Overall, these data show that Hrr. distributum, Hrr. terrestre, Hrr. arcis and Hrr. litoreum constitute a single species. Thus, the latter three should be considered as later, heterotypic synonyms of Hrr. distributum based on the rules for priority of names. We propose an emended description of Hrr. distributum, including the features of Hrr. terrestre, Hrr. arcis and Hrr. litoreum.


Assuntos
Halorubrum/classificação , Filogenia , DNA Arqueal/genética , Genes Arqueais , Lipídeos/química , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Mar Drugs ; 18(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906001

RESUMO

The organisms thriving under extreme conditions better than any other organism living on Earth, fascinate by their hostile growing parameters, physiological features, and their production of valuable bioactive metabolites. This is the case of microorganisms (bacteria, archaea, and fungi) that grow optimally at high salinities and are able to produce biomolecules of pharmaceutical interest for therapeutic applications. As along as the microbiota is being approached by massive sequencing, novel insights are revealing the environmental conditions on which the compounds are produced in the microbial community without more stress than sharing the same substratum with their peers, the salt. In this review are reported the molecules described and produced by halophilic microorganisms with a spectrum of action in vitro: antimicrobial and anticancer. The action mechanisms of these molecules, the urgent need to introduce alternative lead compounds and the current aspects on the exploitation and its limitations are discussed.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Halobacteriales/fisiologia , Archaea/fisiologia , Bactérias/metabolismo , Fungos/fisiologia , Salinidade
6.
Int J Syst Evol Microbiol ; 68(11): 3657-3665, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215594

RESUMO

A polyphasic comparative taxonomic study of Halorubrum ezzemoulense Kharroub et al. 2006, Halorubrum chaoviator Mancinelli et al. 2009 and eight new Halorubrum strains related to these haloarchaeal species was carried out. Multilocus sequence analysis using the five concatenated housekeeping genes atpB, EF-2, glnA, ppsA and rpoB', and phylogenetic analysis based on the 757 core protein sequences obtained from their genomes showed that Hrr. ezzemoulense DSM 17463T, Hrr. chaoviator Halo-G*T (=DSM 19316T) and the eight Halorubrum strains formed a robust cluster, clearly separated from the remaining species of the genus Halorubrum. The orthoANI value and digital DNA-DNA hybridization value, calculated by the Genome-to-Genome Distance Calculator (GGDC), showed percentages among Hrr. ezzemoulense DSM 17463T, Hrr. chaoviator DSM 19316T and the eight Halorubrum strains ranging from 99.4 to 97.9 %, and from 95.0 to 74.2 %, respectively, while these values for those strains and the type strains of the most closely related species of Halorubrum were 88.7-77.4 % and 36.1-22.3 %, respectively. Although some differences were observed, the phenotypic and polar lipid profiles were quite similar for all the strains studied. Overall, these data show that Hrr. ezzemoulense, Hrr. chaoviator and the eight new Halorubrum isolates constitute a single species. Thus, Hrr. chaoviator should be considered as a later, heterotypic synonym of Hrr. ezzemoulense. We propose an emended description of Hrr. ezzemoulense, including the features of Hrr. chaoviator and those of the eight new isolates.


Assuntos
Halorubrum/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Lipídeos/química , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Mar Biotechnol (NY) ; 20(4): 502-511, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29651633

RESUMO

The exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment. Following a full bioassay-guided approach, we isolated a new promising polyextremophilic marine fungus strain 8Na, identified as Aspergillus protuberus MUT 3638, possessing the potential to produce antimicrobial agents. This fungus, isolated from cold seawater, was able to grow in a wide range of salinity, pH and temperatures. The growth conditions were optimised and scaled to fermentation, and its produced extract was subjected to chemical analysis. The active component was identified as bisvertinolone, a member of sorbicillonoid family that was found to display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 µg/mL.


Assuntos
Alcenos/farmacologia , Antibacterianos/metabolismo , Aspergillus/química , Aspergillus/isolamento & purificação , Cicloexanonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias/química , Bactérias/isolamento & purificação , Fungos/química , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Testes de Sensibilidade Microbiana , Oceanos e Mares , Staphylococcus aureus/isolamento & purificação
8.
Front Microbiol ; 9: 512, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662474

RESUMO

To gain a better understanding of how divergence occurs, and how taxonomy can benefit from studying natural populations, we isolated and examined 25 closely related Halorubrum strains obtained from different hypersaline communities and compared them to validly named species and other reference strains using five taxonomic study approaches: phylogenetic analysis using the 16S rRNA gene and multilocus sequencing analysis (MLSA), polar lipid profiles (PLP), average nucleotide identity (ANI) and DNA-DNA hybridization (DDH). 16S rRNA gene sequence could not differentiate the newly isolated strains from described species, while MLSA grouped strains into three major clusters. Two of those MLSA clusters distinguished candidates for new species. The third cluster with concatenated sequence identity equal to or greater than 97.5% was comprised of strains from Aran-Bidgol Lake (Iran) and solar salterns in Namibia and Spain, and two previously described species isolated from Mexico and Algeria. PLP and DDH analyses showed that Aran-Bidgol strains formed uniform populations, and that strains isolated from other geographic locations were heterogeneous and divergent, indicating that they may constitute different species. Therefore, applying only sequencing approaches and similarity cutoffs for circumscribing species may be too conservative, lumping concealed diversity into a single taxon. Further, our data support the interpretation that local populations experience unique evolutionary homogenization pressures, and once relieved of insular constraints (e.g., through migration) are free to diverge.

9.
Int J Syst Evol Microbiol ; 66(1): 435-444, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537912

RESUMO

Two extremely halophilic archaea, strains Cb34T and C170, belonging to the genus Halorubrum, were isolated from the brine of the hypersaline lake Aran-Bidgol in Iran. Cells of the two strains were motile, pleomorphic rods, stained Gram-variable and produced red-pigmented colonies. Strains Cb34T and C170 required 25 % (w/v) salts, pH 7.0 and 37 °C for optimal growth under aerobic conditions; 0.3 M Mg2+ was required. Cells of both isolates were lysed in distilled water and hypotonic treatment with < 10 % NaCl provoked cell lysis. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that these two strains were closely related to Halorubrum cibi B31T (98.8 %) and other members of the genus Halorubrum. In addition, studies based on the rpoB' gene revealed that strains Cb34T and C170 are placed among the species of Halorubrum and are closely related to Halorubrum cibi B31T, with rpoB' gene sequence similarity less than or equal to 95.7 %. The polar lipid patterns of both strains consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The DNA G+C content was 62.1-62.4 mol%. DNA-DNA hybridization studies confirmed that strains Cb34T and C170 constitute a distinct species. Data obtained in this study show that the two strains represent a novel species, for which the name Halorubrum halodurans sp. nov. is proposed. The type strain is Cb34T ( = CECT 8745T = IBRC-M 10233T).


Assuntos
Halorubrum/classificação , Lagos/microbiologia , Filogenia , Águas Salinas , Composição de Bases , DNA Arqueal/genética , Halorubrum/genética , Halorubrum/isolamento & purificação , Irã (Geográfico) , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 65(9): 3016-3023, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26040580

RESUMO

An extremely halophilic archaeon was isolated from a water sample of Isla Bacuta saltern in Huelva, Spain. Strain ASP54(T) is a novel red-pigmented, motile, rod-shaped, Gram-stain-negative and strictly aerobic haloarchaeon. Strain ASP54(T) grew in media containing 15-30% (w/v) salts and optimally with 25% (w/v) salts. It grew between pH 5.0 and 9.0 (optimally at pH 7.5) and at 20-40 °C (optimally at 37 °C). Phylogenetic analysis based on multi-locus sequence analysis (MLSA) and the comparison of 16S rRNA gene sequences revealed that strain ASP54(T) is most closely related to the genus Halovenus. The closest relatives were Halovenus aranensis EB27(T) (92.1% 16S rRNA gene sequence similarity), Halorientalis regularis TNN28(T) (92.1%), and Halorientalis persicus D108(T) (92.0%). The polar lipid pattern of strain ASP54(T) consisted of biphosphatidylglycerol, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and a minor-phospholipid. The predominant respiratory quinone was menaquinone-8 (MK-8) (83%), and a minor amount of MK-8(VIII-H2) (17%) was also detected. The G+C content of the genomic DNA of this strain was 63.1 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data presented in this study, strain ASP54(T) represents a novel species of the genus Halovenus, for which the name Halovenus salina sp. nov. is proposed. The type strain is ASP54(T) ( = CEC(T) 8749(T) = IBRC-M 10946(T) = JCM 30072(T)).


Assuntos
Halobacteriaceae , Animais , Artrópodes , Composição de Bases , DNA Arqueal/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Halobacteriaceae/classificação , Halobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Espanha
11.
Life (Basel) ; 5(2): 1405-26, 2015 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-25997110

RESUMO

The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.

12.
Int J Syst Evol Microbiol ; 65(Pt 6): 1770-1778, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25744586

RESUMO

An extremely halophilic archaeon belonging to the genus Halorubrum, strain C49T, was isolated from sediment of the hypersaline lake Aran-Bidgol in Iran. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain C49T was closely related to Halorubrum saccharovorum JCM 8865T (99.5 %) and other species of the genus Halorubrum. Studies based on multilocus sequence analysis revealed that strain C49T is placed among the species of Halorubrum; the strain constituted a defined branch in comparison with the type strains of species of Halorubrum, while the 16S rRNA gene sequence divergence could not define the status of the newly isolated strain. For optimum growth, strain C49T required 20 % (w/v) salts at pH 7.0 and 37 °C under aerobic conditions. Mg2+ was not required. The cells were pleomorphic rods, motile and stained Gram-variable. Colonies of the strain were pink. Hypotonic treatment with <12 % NaCl provoked cell lysis. The polar lipid pattern of strain C49T consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester derived from both C20C20 and C20C25 archaeol, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The DNA G+C content was 64.2 mol%. DNA-DNA hybridization studies and average nucleotide identity confirmed that strain C49T constitutes a distinct genospecies. Data obtained in this study show that strain C49T represents a novel species, for which the name Halorubrum persicum sp. nov. is proposed. The type strain is C49T ( = IBRC-M 10232T = JCM 30541T).


Assuntos
Sedimentos Geológicos/microbiologia , Halorubrum/classificação , Lagos/microbiologia , Filogenia , Composição de Bases , DNA Arqueal/genética , Ácidos Graxos/química , Genes Arqueais , Halorubrum/genética , Halorubrum/isolamento & purificação , Irã (Geográfico) , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA
13.
Int J Syst Evol Microbiol ; 65(Pt 3): 754-759, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479949

RESUMO

An extremely haloalkaphilic archaeon, strain T26(T), belonging to the genus Halostagnicola, was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26(T) was closely related to Halostagnicola alkaliphila 167-74(T) (98.4 %), Halostagnicola larsenii XH-48(T) (97.5 %) and Halostagnicola kamekurae 194-10(T) (96.8 %). Strain T26(T) grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg(2+) was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26(T) was 60.1 mol% and DNA-DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631(T) and Halostagnicola larsenii CECT 7116(T), respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA-DNA hybridization studies revealed that strain T26(T) belongs to the genus Halostagnicola, and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26(T) ( = CECT 8219(T) = IBRC-M 10759(T) = JCM 18750(T)).


Assuntos
Halobacteriaceae/classificação , Filogenia , Microbiologia da Água , Composição de Bases , DNA Arqueal/genética , Halobacteriaceae/genética , Halobacteriaceae/isolamento & purificação , Lagos , Lipídeos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet
14.
Biochim Biophys Acta ; 1818(5): 1365-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22366205

RESUMO

The lipidome of two extremely haloalkaliphilic archaea, Natronococcus occultus and Natronococcus amylolyticus, has been examined by means of combined thin-layer chromatography and MALDI-TOF/MS analyses. The detailed investigation of lipid profiles has confirmed the presence of i) ether lipid phosphatidylglycerol and phosphatidylglycerophosphate methyl ester as main lipid components, ii) both C(20) and C(25) isopranoid chains in the lipid core and yielded new findings on membrane lipids of these unusual organisms. Besides some novel minor or trace phospholipids and glycolipids, data indicate the presence of ether lipid cardiolipin variants constituted by different combinations of C(20) and C(25) isopranoid chains, never before described in archaea. The role of C(25) isopranoid chains in the adaptation to high pH gradients in the presence of very high salt concentrations is discussed.


Assuntos
Adaptação Fisiológica/fisiologia , Cardiolipinas , Natronococcus , Cardiolipinas/química , Cardiolipinas/metabolismo , Concentração de Íons de Hidrogênio , Natronococcus/química , Natronococcus/metabolismo , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...