Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1062, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316774

RESUMO

The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.

2.
Nat Chem ; 15(12): 1765-1772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723257

RESUMO

Aromaticity is an established and widely used concept for the prediction of the reactivity of organic molecules. However, its role remains largely unexplored in on-surface chemistry, where the interaction with the substrate can alter the electronic and geometric structure of the adsorbates. Here we investigate how aromaticity affects the reactivity of alkyne-substituted porphyrin molecules in cyclization and coupling reactions on a Au(111) surface. We examine and quantify the regioselectivity in the reactions by scanning tunnelling microscopy and bond-resolved atomic force microscopy at the single-molecule level. Our experiments show a substantially lower reactivity of carbon atoms that are stabilized by the aromatic diaza[18]annulene pathway of free-base porphyrins. The results are corroborated by density functional theory calculations, which show a direct correlation between aromaticity and thermodynamic stability of the reaction products. These insights are helpful to understand, and in turn design, reactions with aromatic species in on-surface chemistry and heterogeneous catalysis.

3.
Nanoscale ; 13(47): 19884-19889, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34842889

RESUMO

Porphyrin-based oligomers were synthesized from the condensation of adsorbed 4-benzaldehyde-substituted porphyrins through the formation of CC linkages, following a McMurry-type coupling scheme. Scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy data evidence both the dissociation of aldehyde groups and the formation of CC linkages. Our approach provides a path for the on-surface synthesis of porphyrin-based oligomers coupled by CC bridges - as a means to create functional conjugated nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...