Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 105(6): 805-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25738554

RESUMO

Root-knot nematodes (RKN), Meloidogyne spp., have major economic impact on coffee production in Central and South America. Genetic control of RKN constitutes an essential part for integrated pest management strategy. The objective of this study was to evaluate the resistance of Coffea canephora genotypes (clones) to Meloidogyne spp. Sensitive and drought-tolerant coffee genotypes were used to infer their resistance using nematode reproduction factor and histopathology. Eight clonal genotypes were highly resistant to M. paranaensis. 'Clone 14' (drought-tolerant) and 'ESN2010-04' were the only genotypes highly resistant and moderately resistant, respectively, to both M. incognita races 3 and 1. Several clones were highly resistant to both avirulent and virulent M. exigua. Clone 14 and ESN2010-04 showed multiple resistance to major RKNs tested. Roots of 'clone 14' (resistant) and 'clone 22' (susceptible) were histologically studied against infection by M. incognita race 3 and M. paranaensis. Reduction of juvenile (J2) penetration in clone 14 was first seen at 2 to 6 days after inoculation (DAI). Apparent early hypersensitive reaction (HR) was seen in root cortex between 4 and 6 DAI, which led to cell death and prevention of some nematode development. At 12 to 20 DAI, giant cells formed in the vascular cylinder, besides normal development into J3/J4. From 32 to 45 DAI, giant cells were completely degenerated. Late, intense HR and cell death were frequently observed around young females and giant cells reported for the first time in coffee pathosystem. These results provide rational bases for future studies, including prospection, characterization, and expression profiling of genomic loci involved in both drought tolerance and resistance to multiple RKN species.


Assuntos
Coffea/fisiologia , Doenças das Plantas/imunologia , Tylenchoidea/fisiologia , Animais , Coffea/citologia , Coffea/genética , Coffea/parasitologia , Secas , Feminino , Genótipo , Doenças das Plantas/parasitologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Estresse Fisiológico
2.
Appl Environ Microbiol ; 78(17): 6327-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773631

RESUMO

Plant- and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (herein referred to as P. stewartii), the causative agent of Stewart's bacterial wilt and leaf blight of maize, carries phylogenetically distinct T3SSs. In addition to an Hrc-Hrp T3SS, known to be essential for maize pathogenesis, P. stewartii has a second T3SS (Pantoea secretion island 2 [PSI-2]) that is required for persistence in its flea beetle vector, Chaetocnema pulicaria (Melsh). PSI-2 belongs to the Inv-Mxi-Spa T3SS family, typically found in animal pathogens. Mutagenesis of the PSI-2 psaN gene, which encodes an ATPase essential for secretion of T3SS effectors by the injectisome, greatly reduces both the persistence of P. stewartii in flea beetle guts and the beetle's ability to transmit P. stewartii to maize. Ectopic expression of the psaN gene complements these phenotypes. In addition, the PSI-2 psaN gene is not required for P. stewartii pathogenesis of maize and is transcriptionally upregulated in insects compared to maize tissues. Thus, the Hrp and PSI-2 T3SSs play different roles in the life cycle of P. stewartii as it alternates between its insect vector and plant host.


Assuntos
Sistemas de Secreção Bacterianos , Besouros/microbiologia , Insetos Vetores/microbiologia , Pantoea/metabolismo , Pantoea/patogenicidade , Zea mays/microbiologia , Animais , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Teste de Complementação Genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Virulência , Fatores de Virulência/genética
3.
Mol Plant Microbe Interact ; 22(1): 18-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19061399

RESUMO

The fully sequenced genome of aster yellows phytoplasma strain witches' broom (AY-WB; Candidatus Phytoplasma asteris) was mined for the presence of genes encoding secreted proteins based on the presence of N-terminal signal peptides (SP). We identified 56 secreted AY-WB proteins (SAP). These SAP are candidate effector proteins potentially involved in interaction with plant and insect cell components. One of these SAP, SAP11, contains an N-terminal SP sequence and a eukaryotic bipartite nuclear localization signal (NLS). Transcripts for SAP11 were detected in AY-WB-infected plants. Yellow fluorescence protein (YFP)-tagged SAP11 accumulated in Nicotiana benthamiana cell nuclei, whereas the nuclear targeting of YFP-tagged SAP11 mutants with disrupted NLS was inhibited. The nuclear transport of YFP-SAP11 was also inhibited in N. benthamiana plants in which the expression of importin alpha was knocked down using virus-induced gene silencing (VIGS). Furthermore, SAP11 was detected by immunocytology in nuclei of young sink tissues of China aster plants infected with AY-WB. In summary, this work shows that AY-WB phytoplasma produces a protein that targets the nuclei of plant host cells; this protein is a potential phytoplasma effector that may alter plant cell physiology.


Assuntos
Aster/microbiologia , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Phytoplasma/metabolismo , Plantas/microbiologia , Sequência de Aminoácidos , Aster/metabolismo , Proteínas de Bactérias/genética , Western Blotting , Genoma Bacteriano/genética , Dados de Sequência Molecular , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA