Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1206535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404539

RESUMO

Maize silage is a key component of feed rations in dairy systems due to its high forage and grain yield, water use efficiency, and energy content. However, maize silage nutritive value can be compromised by in-season changes during crop development due to changes in plant partitioning between grain and other biomass fractions. The partitioning to grain (harvest index, HI) is affected by the interactions between genotype (G) × environment (E) × management (M). Thus, modelling tools could assist in accurately predicting changes during the in-season crop partitioning and composition and, from these, the HI of maize silage. Our objectives were to (i) identify the main drivers of grain yield and HI variability, (ii) calibrate the Agricultural Production Systems Simulator (APSIM) to estimate crop growth, development, and plant partitioning using detailed experimental field data, and (iii) explore the main sources of HI variance in a wide range of G × E × M combinations. Nitrogen (N) rates, sowing date, harvest date, plant density, irrigation rates, and genotype data were used from four field experiments to assess the main drivers of HI variability and to calibrate the maize crop module in APSIM. Then, the model was run for a complete range of G × E × M combinations across 50 years. Experimental data demonstrated that the main drivers of observed HI variability were genotype and water status. The model accurately simulated phenology [leaf number and canopy green cover; Concordance Correlation Coefficient (CCC)=0.79-0.97, and Root Mean Square Percentage Error (RMSPE)=13%] and crop growth (total aboveground biomass, grain + cob, leaf, and stover weight; CCC=0.86-0.94 and RMSPE=23-39%). In addition, for HI, CCC was high (0.78) with an RMSPE of 12%. The long-term scenario analysis exercise showed that genotype and N rate contributed to 44% and 36% of the HI variance. Our study demonstrated that APSIM is a suitable tool to estimate maize HI as one potential proxy of silage quality. The calibrated APSIM model can now be used to compare the inter-annual variability of HI for maize forage crops based on G × E × M interactions. Therefore, the model provides new knowledge to (potentially) improve maize silage nutritive value and aid genotype selection and harvest timing decision-making.

2.
Genes (Basel) ; 12(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806889

RESUMO

The objective of this study was to identify genomic regions associated with milk fat percentage (FP), crude protein percentage (CPP), urea concentration (MU) and efficiency of crude protein utilization (ECPU: ratio between crude protein yield in milk and dietary crude protein intake) using grazing, mixed-breed, dairy cows in New Zealand. Phenotypes from 634 Holstein Friesian, Jersey or crossbred cows were obtained from two herds at Massey University. A subset of 490 of these cows was genotyped using Bovine Illumina 50K SNP-chips. Two genome-wise association approaches were used, a single-locus model fitted to data from 490 cows and a single-step Bayes C model fitted to data from all 634 cows. The single-locus analysis was performed with the Efficient Mixed-Model Association eXpedited model as implemented in the SVS package. Single nucleotide polymorphisms (SNPs) with genome-wide association p-values ≤ 1.11 × 10-6 were considered as putative quantitative trait loci (QTL). The Bayes C analysis was performed with the JWAS package and 1-Mb genomic windows containing SNPs that explained > 0.37% of the genetic variance were considered as putative QTL. Candidate genes within 100 kb from the identified SNPs in single-locus GWAS or the 1-Mb windows were identified using gene ontology, as implemented in the Ensembl Genome Browser. The genes detected in association with FP (MGST1, DGAT1, CEBPD, SLC52A2, GPAT4, and ACOX3) and CPP (DGAT1, CSN1S1, GOSR2, HERC6, and IGF1R) were identified as candidates. Gene ontology revealed six novel candidate genes (GMDS, E2F7, SIAH1, SLC24A4, LGMN, and ASS1) significantly associated with MU whose functions were in protein catabolism, urea cycle, ion transportation and N excretion. One novel candidate gene was identified in association with ECPU (MAP3K1) that is involved in post-transcriptional modification of proteins. The findings should be validated using a larger population of New Zealand grazing dairy cows.


Assuntos
Estudo de Associação Genômica Ampla/veterinária , Leite/química , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Cruzamento , Bovinos , Ácidos Graxos/metabolismo , Feminino , Herbivoria , Proteínas do Leite/metabolismo , Nova Zelândia , Ureia/metabolismo
3.
Animals (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800330

RESUMO

The objectives of this study were two-fold. Firstly, to estimate the likely correlated responses in milk urea nitrogen (MUN) concentration, lactation yields of milk (MY), fat (FY) and crude protein (CPY) and mature cow liveweight (LWT) under three selection scenarios which varied in relative emphasis for MUN; 0% relative emphasis (MUN0%: equivalent to current New Zealand breeding worth index), and sign of the economic value; 20% relative emphasis positive selection (MUN+20%), and 20% relative emphasis negative selection (MUN-20%). Secondly, to estimate for these three scenarios the likely change in urinary nitrogen (UN) excretion under pasture based grazing conditions. The predicted genetic responses per cow per year for the current index were 16.4 kg MY, 2.0 kg FY, 1.4 kg CPY, -0.4 kg LWT and -0.05 mg/dL MUN. Positive selection on MUN in the index resulted in annual responses of 23.7 kg MY, 2.0 kg FY, 1.4 kg CPY, 0.6 kg LWT and 0.10 mg/dL MUN, while negative selection on MUN in the index resulted in annual responses of 5.4 kg MY, 1.6 kg FY, 1.0 kg CPY, -1.1 kg LWT and -0.17 mg/dL MUN. The MUN-20% reduced both MUN and cow productivity, whereas the MUN+20% increased MUN, milk production and LWT per cow. Per cow dry matter intake (DMI) was increased in all three scenarios as milk production increased compared to base year, therefore stocking rate (SR) was adjusted to control pasture cover. Paradoxically, ten years of selection with SR adjusted to maintain annual feed demand under the MUN+20% actually reduced per ha UN excretion by 3.54 kg, along with increases of 63 kg MY, 26 kg FY and 16 kg CPY compared to the base year. Ten years of selection on the MUN0% index generated a greater reductions of 10.45 kg UN and 30 kg MY, and increases of 32 kg FY and 21 kg CPY per ha, whereas the MUN-20% index reduced 14.06 kg UN and 136 kg MY with increases of 32 kg FY and 18 kg CPY compared to base year. All three scenarios increased partitioning of nitrogen excreted as feces. The selection index that excluded MUN was economically beneficial in the current economic circumstances over selection indices including MUN regardless of whether selection was either for or against MUN. There was no substantial benefit from an environmental point of view from including MUN in the Breeding Worth index, because N leaching is more a function of SR rather than of individual cow UN excretion. This study demonstrates that attention needs to be paid to the whole system consequences of selection for environmental outcomes in pastoral grazing circumstances.

4.
Animals (Basel) ; 10(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549332

RESUMO

In this study, we modelled and compared lactation curves of efficiency of crude protein utilisation (ECPU) and the nitrogen (N) excreta partitioning of milking cows of two contrasting spring-calving pasture-based herds to test some aspects of farming intensification practices on cow performance and N partition. In the low-intensity production system (LIPS), 257 cows were milked once-daily and fed diets comprised of pasture with low supplementary feed inclusion during lactation (304 kg pasture silage/cow). In the high-intensity production system (HIPS), 207 cows were milked twice-daily and fed pasture with higher supplementary feed inclusion (429 kg pasture silage and 1695 kg concentrate/cow). The dietary crude protein (CP) utilisation was calculated for each cow at every herd test date as the ECPU as a proportion of protein yield (PY) from the CP intake (CPI) derived from intake assessments based on metabolisable energy requirements, and the CP balance (CPB) calculated as the difference between CPI and PY. Total N excreta partitioned to faeces (FN) and urine (UN) was estimated by back-calculating UN from FN, considering dietary N, and from N retained in body tissues, taking into account live weight change during the lactation. The higher CPI (2.7 vs. 2.5 kg CP/day), along with the reduced milk yield (1100 kg milk/cow less), of the LIPS cows led to a lower ECPU (23% vs. 31%) and to a higher CPB (2.1 vs. 1.8 kg CP/day) when compared to the HIPS cows. Mean N excreta, and particularly UN, was significantly higher in LIPS cows, and this was explained by higher dietary CP and by the reduced PY when compared to the HIPS cows. Reducing the low-CP supplementation in the "de-intensified" herd lessened the ECPU, resulting in higher UN, which is sensitive in terms of body water eutrophication.

5.
Anim Sci J ; 91(1): e13331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219923

RESUMO

This study evaluated the concentration and expression of lactoferrin (LF) in cows selected for once a day (OAD) milking compared to twice a day (TAD) milking. Milk samples were collected from the Massey University TAD and OAD herds. Milk traits and expression of LF and insulin-like growth factor 1 (IGF-1) were analyzed with a general linear model that included the fixed effects of milking frequency, lactation number, interaction between milking frequency and lactation number, and as covariates proportion of F, heterosis F × J and deviation from the herd median calving date. Cows milked OAD produced milk with higher (p < .01) concentrations of protein and lactose than TAD milked cows. Compared to TAD cows, cows milked OAD had higher expression of the LF gene (1.40 vs. 1.29 folds, p = .03) and the IGF-1 gene (1.69 vs. 1.48 folds, p = .007). The correlation between the expression of LF gene and the concentration of LF in milk was strong (r = .66 p < .001), but the correlation between the expression of the IGF-1 gene and LF concentration was stronger (r = .94, p < .001). These results suggest that milking frequency affects the milk composition and expression of milk composition genes at early lactation.


Assuntos
Bovinos/genética , Bovinos/metabolismo , Expressão Gênica , Lactação/genética , Lactação/metabolismo , Lactoferrina/genética , Lactoferrina/metabolismo , Leite/metabolismo , Animais , Feminino , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...