Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Physiol Plant ; 175(6): e14067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148251

RESUMO

Studies on the relationship between Handroanthus serratifolius and arbuscular mycorrhizal fungi (AMF) are limited in the literature. The influence of AMF spore density on plant development is fundamental information to determining the degree of benefits in this relationship. Therefore, the objective of this study was to investigate the effects of different AMF spore densities on thirty-day-old H. serratifolius seedlings, focusing on growth and biochemical parameters using a completely randomized experimental design with three different spore densities and control. The spore densities were classified as low, medium, and high, with 1.54, 3.08, and 12.35 spores g-1 , respectively. Plant growth analysis, mycorrhizal colonization, nitrogen compound concentration, and carbohydrate analysis were performed. The medium spore density treatment showed the greatest increases in biomass, height, leaf area, and root volume. Furthermore, greater absorption of phosphorus and better dynamics in nitrogen metabolism were observed in mycorrhizal plants compared to the control since the ammonium and nitrate compounds were rapidly incorporated into protein and chlorophyll compounds. The carbohydrate analysis revealed the influence of source-sink dynamics on sugar concentration in different plant parts. These findings support the importance of determining the appropriate spore density for assessing the symbiotic relationship between forest species and AMF.


Assuntos
Micorrizas , Plântula , Esporos Fúngicos , Plantas , Carboidratos , Raízes de Plantas/microbiologia
2.
Plants (Basel) ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297755

RESUMO

Climate change causes increasingly longer periods of drought, often causing the death of plants, especially when they are in the early stages of development. Studying the benefits provided by arbuscular mycorrhizal (AM) fungi to plants in different water regimes is an efficient and sustainable strategy to face climate change. Thus, this study investigated the influence of AM fungi on Handroanthus serratifolius seedlings under different water regimes, based on biochemical, and nutritional growth parameters. The experiment was carried out in H. serratifolius seedlings cultivated with mycorrhizas (+AMF) and without mycorrhizas (-AMF) in three water regimes; a severe water deficit (SD), a moderate water deficit (MD), and a well-watered (WW) condition. AM fungi provided greater osmoregulation under water deficit conditions through the accumulation of soluble sugars, total free amino acids, and proline, as well as by reducing sugar. The increase in the absorption of phosphorus and nitrate was observed only in the presence of fungi in the well-watered regimen. A higher percentage of colonization was found in plants submitted to the well-watered regimen. Ultimately, AM fungi promoted biochemical, nutritional, and growth benefits for H. serratifolius seedlings under the water deficit and well-hydrated conditions, proving that AMF can be used to increase the tolerance of H. serratifolius plants, and help them to survive climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...