Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 94: 103649, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279074

RESUMO

In this study, the bioprotective potential of Lactobacillus sakei CTC494 against Listeria monocytogenes CTC1034 was evaluated on vacuum packaged hot-smoked sea bream at 5 °C and dynamic temperatures ranging from 3 to 12 °C. The capacity of three microbial competition interaction models to describe the inhibitory effect of L. sakei CTC494 on L. monocytogenes was assessed based on the Jameson effect and Lotka-Volterra approaches. A sensory analysis was performed to evaluate the spoiling capacity of L. sakei CTC494 on the smoked fish product at 5 °C. Based on the sensory results, the bioprotection strategy against the pathogen was established by inoculating the product at a 1:2 ratio (pathogen:bioprotector, log CFU/g). The kinetic growth parameters of both microorganisms were estimated in mono-culture at constant storage (5 °C). In addition, the inhibition function parameters of the tested interaction models were estimated in co-culture at constant and dynamic temperature storage using as input the mono-culture kinetic parameters. The growth potential (δ log) of L. monocytogenes, in mono-culture, was 3.5 log on smoked sea bream during the experimental period (20 days). In co-culture, L. sakei CTC494 significantly reduced the capability of L. monocytogenes to grow, although its effectiveness was temperature dependent. The LAB strain limited the growth of the pathogen under storage at 5 °C (<1 log increase) and at dynamic profile 2 (<2 log increase). Besides, under storage at dynamic profile 1, the growth of L. monocytogenes was inhibited (<0.5 log increase). These results confirmed the efficacy of L. sakei CTC494 for controlling the pathogen growth on the studied fish product. The Lotka-Volterra competition model showed slightly better fit to the observed L. monocytogenes growth response than the Jameson-based models according to the statistical performance. The proposed modelling approach could support the assessment and establishment of bioprotective culture-based strategies aimed at reducing the risk of listeriosis linked to the consumption of RTE hot-smoked sea bream.


Assuntos
Produtos Pesqueiros/microbiologia , Conservação de Alimentos/métodos , Latilactobacillus sakei/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Animais , Antibiose , Embalagem de Alimentos , Listeria monocytogenes/fisiologia , Dourada/microbiologia
2.
Food Microbiol ; 90: 103498, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336378

RESUMO

This study was aimed at characterizing microbiologically Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) produced in two estuarine ecosystems in Andalusia (Spain): the estuary of the river Guadalquivir (La Puebla del Río, Sevilla) (A), and the estuary of the river Guadiana (Ayamonte, Huelva) (B). The collected fish individuals and water were analysed for hygiene indicator microorganisms and pathogens. The statistical analysis of results revealed that microbial counts for the different microbiological parameters were not statistically different for fish type. On the contrary, considering anatomic part, viscera showed significantly higher concentrations for Enterobacteriaceae, total coliforms and for Staphylococcus spp. coagulase +. Furthermore, location A showed in water and fish higher levels for lactic acid bacteria, aerobic mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. coagulase +. Neither Listeria monocytogenes, nor Salmonella spp. were detected, though Vibrio parahaemolyticus was identified, molecularly, in estuarine water in location B. The predictive analysis demonstrated that the initial microbiological quality could have an impact on product shelf-life, being longer for location B, with better microbiological quality. Results stress the relevance of preventing the microbiological contamination of water in estuary production systems in order to assure the quality and safety of Gilthead sea bream and Sea bass.


Assuntos
Aquicultura , Bactérias/isolamento & purificação , Bass/microbiologia , Doenças dos Peixes/microbiologia , Dourada/microbiologia , Animais , Bactérias/classificação , Bactérias/patogenicidade , Ecossistema , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/patogenicidade , Estuários , Doenças dos Peixes/epidemiologia , Armazenamento de Alimentos , Prevalência , Alimentos Marinhos/microbiologia , Espanha/epidemiologia , Staphylococcus/isolamento & purificação , Staphylococcus/patogenicidade , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...