Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 6(9): e2022GH000637, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36545248

RESUMO

Lower respiratory tract infections disproportionately affect children and are one of the main causes of hospital referral and admission. COVID-19 stay-at-home orders in early 2020 led to substantial reductions in hospital admissions, but the specific contribution of changes in air quality through this natural experiment has not been examined. Capitalizing on the timing of the stay-at-home order, we quantified the specific contribution of fine-scale changes in PM2.5 concentrations to reduced respiratory emergency department (ED) visits in the pediatric population of San Diego County, California. We analyzed data on pediatric ED visits (n = 72,333) at the ZIP-code level for respiratory complaints obtained from the ED at Rady Children's Hospital in San Diego County (2015-2020) and ZIP-code level PM2.5 from an ensemble model integrating multiple machine learning algorithms. We examined the decrease in respiratory visits in the pediatric population attributable to the stay-at-home order and quantified the contribution of changes in PM2.5 exposure using mediation analysis (inverse of odds ratio weighting). Pediatric respiratory ED visits dropped during the stay-at-home order (starting on 19 March 2020). Immediately after this period, PM2.5 concentrations, relative to the counterfactual values based in the 4-year baseline period, also decreased with important spatial variability across ZIP codes in San Diego County. Overall, we found that decreases in PM2.5 attributed to the stay-at-home order contributed to explain 4% of the decrease in pediatric respiratory ED visits. We identified important spatial inequalities in the decreased incidence of pediatric respiratory illness and found that brief decline in air pollution levels contributed to a decrease in respiratory ED visits.

2.
Sci Rep ; 12(1): 13747, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961991

RESUMO

Atmospheric rivers (ARs) generate most of the economic losses associated with flooding in the western United States and are projected to increase in intensity with climate change. This is of concern as flood damages have been shown to increase exponentially with AR intensity. To assess how AR-related flood damages are likely to respond to climate change, we constructed county-level damage models for the western 11 conterminous states using 40 years of flood insurance data linked to characteristics of ARs at landfall. Damage functions were applied to 14 CMIP5 global climate models under the RCP4.5 "intermediate emissions" and RCP8.5 "high emissions" scenarios, under the assumption that spatial patterns of exposure, vulnerability, and flood protection remain constant at present day levels. The models predict that annual expected AR-related flood damages in the western United States could increase from $1 billion in the historical period to $2.3 billion in the 2090s under the RCP4.5 scenario or to $3.2 billion under the RCP8.5 scenario. County-level projections were developed to identify counties at greatest risk, allowing policymakers to target efforts to increase resilience to climate change.


Assuntos
Inundações , Rios , Mudança Climática , Previsões , Modelos Teóricos , Estados Unidos
3.
Pediatrics ; 147(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33757996

RESUMO

BACKGROUND AND OBJECTIVES: Exposure to airborne fine particles with diameters ≤2.5 µm (PM2.5) pollution is a well-established cause of respiratory diseases in children; whether wildfire-specific PM2.5 causes more damage, however, remains uncertain. We examine the associations between wildfire-specific PM2.5 and pediatric respiratory health during the period 2011-2017 in San Diego County, California, and compare these results with other sources of PM2.5. METHODS: Visits to emergency and urgent care facilities of Rady's Children Hospital network in San Diego County, California, by individuals (aged ≤19 years) with ≥1 of the following respiratory conditions: difficulty breathing, respiratory distress, wheezing, asthma, or cough were regressed on daily, community-level exposure to wildfire-specific PM2.5 and PM2.5 from ambient sources (eg, traffic emissions). RESULTS: A 10-unit increase in PM2.5 (from nonsmoke sources) was estimated to increase the number of admissions by 3.7% (95% confidence interval: 1.2% to 6.1%). In contrast, the effect of PM2.5 attributable to wildfire was estimated to be a 30.0% (95% confidence interval: 26.6% to 33.4%) increase in visits. CONCLUSIONS: Wildfire-specific PM2.5 was found to be ∼10 times more harmful on children's respiratory health than PM2.5 from other sources, particularly for children aged 0 to 5 years. Even relatively modest wildfires and associated PM2.5 resolved on our record produced major health impacts, particularly for younger children, in comparison with ambient PM2.5.


Assuntos
Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Transtornos Respiratórios/induzido quimicamente , Fumaça/efeitos adversos , Incêndios Florestais , Adolescente , Instituições de Assistência Ambulatorial , California , Criança , Pré-Escolar , Serviço Hospitalar de Emergência , Humanos , Lactente , Recém-Nascido , Transtornos Respiratórios/epidemiologia
4.
Nat Commun ; 12(1): 1493, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674571

RESUMO

Wildfires are becoming more frequent and destructive in a changing climate. Fine particulate matter, PM2.5, in wildfire smoke adversely impacts human health. Recent toxicological studies suggest that wildfire particulate matter may be more toxic than equal doses of ambient PM2.5. Air quality regulations however assume that the toxicity of PM2.5 does not vary across different sources of emission. Assessing whether PM2.5 from wildfires is more or less harmful than PM2.5 from other sources is a pressing public health concern. Here, we isolate the wildfire-specific PM2.5 using a series of statistical approaches and exposure definitions. We found increases in respiratory hospitalizations ranging from 1.3 to up to 10% with a 10 µg m-3 increase in wildfire-specific PM2.5, compared to 0.67 to 1.3% associated with non-wildfire PM2.5. Our conclusions point to the need for air quality policies to consider the variability in PM2.5 impacts on human health according to the sources of emission.


Assuntos
Material Particulado/toxicidade , Respiração/efeitos dos fármacos , Fumaça/análise , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , California , Mudança Climática , Exposição Ambiental , Hospitalização , Humanos , Material Particulado/análise , Saúde Pública , Estações do Ano
5.
Sci Adv ; 5(12): eaax4631, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840064

RESUMO

Atmospheric rivers (ARs) are extratropical storms that produce extreme precipitation on the west coasts of the world's major landmasses. In the United States, ARs cause significant flooding, yet their economic impacts have not been quantified. Here, using 40 years of data from the National Flood Insurance Program, we show that ARs are the primary drivers of flood damages in the western United States. Using a recently developed AR scale, which varies from category 1 to 5, we find that flood damages increase exponentially with AR intensity and duration: Each increase in category corresponds to a roughly 10-fold increase in damages. Category 4 and 5 ARs cause median damages in the tens and hundreds of millions of dollars, respectively. Rising population, increased development, and climate change are expected to worsen the risk of AR-driven flood damage in future decades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...