Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(6): 2262-2271, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36730787

RESUMO

Cellulosic biofuels are part of a portfolio of solutions to address climate change; however, their production remains expensive and federal policy interventions (e.g., Renewable Fuel Standard) have not spurred broad construction of cellulosic biorefineries. A range of state-level interventions have also been enacted, but their implications for the financial viability of biorefineries are not well understood. To address this gap, this study evaluated the efficacy of 20 state-level tax incentives from 14 states and their interactions with other location-specific economic parameters (e.g., state income tax rates, electricity prices). To characterize implications of location-specific policies and parameters on biorefinery cash flows, we developed a new BioSTEAM Location-Specific Evaluation (BLocS) module for the open-source software BioSTEAM. Leveraging BLocS and BioSTEAM, we characterized the minimum ethanol selling price (MESP) for a cellulosic biorefinery (using corn stover as feedstock) and two conventional biorefineries (using corn or sugarcane as feedstock) for comparison. Among state-specific scenarios, nonincentivized MESPs for the corn stover biorefinery ranged from 0.74 $·L-1 (4.20 $·gallon gasoline equivalent [gge]-1) [0.69-0.79 $·L-1; 3.91-4.48 $·gge-1; Oklahoma] to 1.02 $·L-1 (5.78 $·gge-1) [0.95-1.09 $·L-1; 5.39-6.18 $·gge-1; New York], while the tax incentive-induced MESP reduction ranged from negligible (Virginia) to 5.78% [5.43-6.20%; Iowa]. Ultimately, this work can inform the design of policy incentives for biorefineries under specific deployment contexts.


Assuntos
Biocombustíveis , Motivação , Gasolina , Etanol , New York , Zea mays
2.
Metab Eng ; 76: 18-28, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626963

RESUMO

Plants produce many high-value oleochemical molecules. While oil-crop agriculture is performed at industrial scales, suitable land is not available to meet global oleochemical demand. Worse, establishing new oil-crop farms often comes with the environmental cost of tropical deforestation. The field of metabolic engineering offers tools to transplant oleochemical metabolism into tractable hosts while simultaneously providing access to molecules produced by non-agricultural plants. Here, we evaluate strategies for rewiring metabolism in the oleaginous yeast Yarrowia lipolytica to synthesize a foreign lipid, 3-acetyl-1,2-diacyl-sn-glycerol (acTAG). Oils made up of acTAG have a reduced viscosity and melting point relative to traditional triacylglycerol oils making them attractive as low-grade diesels, lubricants, and emulsifiers. This manuscript describes a metabolic engineering study that established acTAG production at g/L scale, exploration of the impact of lipid bodies on acTAG titer, and a techno-economic analysis that establishes the performance benchmarks required for microbial acTAG production to be economically feasible.


Assuntos
Yarrowia , Triglicerídeos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica , Metabolismo dos Lipídeos , Óleos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...