Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(12): 15047-15058, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36916875

RESUMO

Sprouting angiogenesis is orchestrated by an intricate balance of biochemical and mechanical cues in the local tissue microenvironment. Interstitial flow has been established as a potent regulator of angiogenesis. Similarly, extracellular matrix (ECM) physical properties, such as stiffness and microarchitecture, have also emerged as important mediators of angiogenesis. However, the interplay between interstitial flow and ECM physical properties in the initiation and control of angiogenesis is poorly understood. Using a three-dimensional (3D) microfluidic tissue analogue of angiogenic sprouting with defined interstitial flow superimposed over ECM with well-characterized physical properties, we found that the addition of hyaluronan (HA) to collagen-based matrices significantly enhances sprouting induced by interstitial flow compared to responses in collagen-only hydrogels. We confirmed that both the stiffness and matrix pore size of collagen-only hydrogels were increased by the addition of HA. Interestingly, interstitial flow-potentiated sprouting responses in collagen/HA matrices were not affected when functionally blocking the HA receptor CD44. In contrast, enzymatic depletion of HA in collagen/HA matrices with hyaluronidase (HAdase) resulted in decreased stiffness, pore size, and interstitial flow-mediated sprouting to the levels observed in collagen-only matrices. Taken together, these results suggest that HA enhances interstitial flow-mediated angiogenic sprouting through its alterations to collagen ECM stiffness and pore size.


Assuntos
Sinais (Psicologia) , Matriz Extracelular , Matriz Extracelular/química , Colágeno/química , Fenômenos Fisiológicos Cardiovasculares , Hidrogéis/farmacologia
2.
Adv Nanobiomed Res ; 2(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35156093

RESUMO

Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.

3.
ACS Biomater Sci Eng ; 6(3): 1408-1417, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292818

RESUMO

This paper describes an experimental characterization scheme of the biophysical properties of reconstituted hydrogel matrices based on indentation testing, quantification of transport via microfluidics, and confocal reflectance microscopy analysis. While methods for characterizing hydrogels exist and are widely used, they often do not measure diffusive and convective transport concurrently, determine the relationship between microstructure and transport properties, and decouple matrix mechanics and transport properties. Our integrated approach enabled independent and quantitative measurements of the structural, mechanical, and transport properties of hydrogels in a single study. We used fibrillar type I collagen as the base matrix and investigated the effects of two different matrix modifications: (1) cross-linking with human recombinant tissue transglutaminase II (hrTGII) and (2) supplementation with the nonfibrillar matrix constituent hyaluronic acid (HA). hrTGII modified the matrix structure and transport but not mechanical parameters. Furthermore, changes in the matrix structure due to hrTGII were seen to be dependent on the concentration of collagen. In contrast, supplementation of HA at different collagen concentrations altered the matrix microstructure and mechanical indentation behavior but not transport parameters. These experimental observations reveal the important relationship between extracellular matrix (ECM) composition and biophysical properties. The integrated techniques are versatile, robust, and accessible; and as matrix-cell interactions are instrumental for many biological processes, the methods and findings described here should be broadly applicable for characterizing hydrogel materials used for three-dimensional (3-D) tissue-engineered culture models.


Assuntos
Colágenos Fibrilares , Hidrogéis , Colágeno , Matriz Extracelular , Humanos , Ácido Hialurônico
4.
Adv Healthc Mater ; 9(4): e1901399, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944591

RESUMO

Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well-characterized for molecular-binding and mechanical properties to reconstitute vessel-like analogues in vitro. This study focuses on three distinct isoforms of the pro-metastatic chemokine CXCL12. In collagen-only hydrogel, CXCL12-α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12-ß and CXCL12-γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12-γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12-γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform-specific responses toward directing angiogenesis.


Assuntos
Permeabilidade Capilar , Quimiocina CXCL12 , Colágeno , Matriz Extracelular , Humanos , Ácido Hialurônico , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...