Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(32): e202305460, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37334995

RESUMO

In this work, a microwave synthesis followed by a simple purification process produces a new type of chiral Carbon Nanodots (CNDs). These CNDs are soluble in organic solvents, exhibit amino groups on their surface and display interesting absorption and emission properties along with mirror image profiles in the electronic circular dichroism spectrum. All these features set the stage for CNDs to act as multifunctional catalytic platforms, able to promote diverse chemical transformations. In particular, the outer shell composition of CNDs was instrumental to carry out organocatalytic reactions in an enantioselective fashion. In addition, the redox and light-absorbing properties of the material are suitable to drive photochemical processes. Finally, the photoredox and organocatalytic activations of CNDs were exploited at the same time to promote a cross-dehydrogenative coupling. This work demonstrates that CNDs can be used as catalysts to promote multiple reactivities, previously considered exclusive domain of molecular catalysts.

2.
Chem Sci ; 14(13): 3676-3681, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006689

RESUMO

Compounds featuring atropisomerism are ubiquitous in natural products, therapeutics, advanced materials, and asymmetric synthesis. However, stereoselective preparation of these compounds presents many synthetic challenges. This article introduces streamlined access to a versatile chiral biaryl template through C-H halogenation reactions employing high-valent Pd catalysis in combination with chiral transient directing groups. This methodology is highly scalable, insensitive to moisture and air, and proceeds, in select cases, with Pd-loadings as low as 1 mol%. Chiral mono-brominated, dibrominated, and bromochloro biaryls are prepared in high yield and excellent stereoselectivity. These serve as remarkable building blocks bearing orthogonal synthetic handles for a gamut of reactions. Empirical studies elucidated regioselective C-H activation to be predicated on the oxidation state of Pd and diverging site-halogenation to result from cooperative effects of Pd and oxidant.

3.
J Org Chem ; 88(9): 6008-6016, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001017

RESUMO

A light-driven protocol for the synthesis of 2,3-dihydrobenzofurans under mild conditions is reported. Specifically, the cascade process is initiated by the photochemical activity of allyl-functionalized phenolate anions, generated in situ upon deprotonation of the corresponding phenols. The reaction proceeds rapidly with reaction times as low as 35 min, delivering a wide range of densely functionalized products (20 examples, yields up to 69%). Mechanistic studies have also been performed providing convincing evidence for the photochemical formation of carbon-centered radical species. A cascade reaction pathway involving a tandem atom transfer radical addition (ATRA) and an intramolecular nucleophilic substitution (SN) process is proposed to occur.

4.
J Am Chem Soc ; 145(2): 1448-1459, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603159

RESUMO

Chiral eight-membered carbocycles are important motifs in organic chemistry, natural product chemistry, chemical biology, and medicinal chemistry. The lack of synthetic methods toward their construction is a challenge preventing their rational design and stereoselective synthesis. The catalytic enantioselective [4 + 4] cycloaddition is one of the most straightforward and atom-economical methods to obtain chiral cyclooctadiene derivatives. We report the first organocatalytic asymmetric [4 + 4] cycloaddition of 9H-fluorene-1-carbaldehydes with electron-deficient dienes affording cyclooctadiene derivatives in good yields and with excellent control of peri-, diastereo-, and enantioselectivities. The reaction concept is based on the aminocatalytic formation of a polarized butadiene component incorporated into a cyclic extended π-system, with restricted conformational freedom, allowing for a stereocontrolled [4 + 4] cycloaddition. FMO analysis unveiled that the HOMO and LUMO of the two reacting partners resemble those of butadiene. The methodology allows for the construction of cyclooctadiene derivatives decorated with various functionalities. The cyclooctadienes were synthetically elaborated, allowing for structural diversity demonstrating their synthetic utility for the formation of, for example, chiral cyclobutene- or cyclooctane scaffolds. DFT computational studies shed light on the reaction mechanism identifying the preference for an initial but reversible [4 + 2] cycloaddition delivering an off-cycle catalyst resting state, from which catalyst elimination is not possible. The off-cycle catalyst-bound intermediate undergoes a retro-[4 + 2] cycloaddition, followed by a [4 + 4] cycloaddition generating a cycloadduct from which catalyst elimination is possible. The reaction pathway accounts for the observed peri-, diastereo-, and enantioselectivity of the organocatalytic [4 + 4] cycloaddition.


Assuntos
Butadienos , Reação de Cicloadição , Estereoisomerismo , Catálise
5.
Chemistry ; 28(60): e202202395, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35921208

RESUMO

The first atroposelective aminocatalytic methodology for the construction of C-N atropisomers is presented. The synthesis of this class of axially chiral molecules typically encompasses substrates in which the C-N bond is pre-formed. In contrast, this work presents the direct coupling of indole-2-carboxaldehydes to ortho-quinones, to form the stereogenic C-N axis in an atroposelective way. Application of typical secondary amine catalysts furnished the desired product, however, in low yields and as a complex mixture arising from poor regiocontrol among the C3 - and N1 -sites of the indole core. A new aminocatalyst was designed and synthesized with increased outer-sphere steric bulk to address these challenges thereby providing good levels of regio- and enantioselectivity. A novel library of functionalized and enantioenriched C-N atropisomers was obtained and their synthetic utility was demonstrated by various transformations.


Assuntos
Indóis , Quinonas , Estereoisomerismo , Indóis/química , Aminas/química , Misturas Complexas
6.
J Am Chem Soc ; 144(2): 1056-1065, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990550

RESUMO

Nonbiaryl atropisomers are molecules defined by a stereogenic axis featuring at least one nonarene moiety. Among these, scaffolds bearing a conformationally stable C(sp2)-C(sp3) stereogenic axis have been observed in natural compounds; however, their enantioselective synthesis remains almost completely unexplored. Herein we disclose a new class of chiral C(sp2)-C(sp3) atropisomers obtained with high levels of stereoselectivity (up to 99% ee) by means of an organocatalytic asymmetric methodology. Multiple molecular motifs could be embedded in this class of C(sp2)-C(sp3) atropisomers, showing a broad and general protocol. Experimental data provide strong evidence of the conformational stability of the C(sp2)-C(sp3) stereogenic axis (up to t1/225 °C >1000 y) in the obtained compounds and show kinetic control over this rare stereogenic element. This, coupled with density functional theory calculations, suggests that the observed stereoselectivity arises from a Curtin-Hammett scenario establishing an equilibrium of intermediates. Furthermore, the experimental investigation led to evidence of the operating principle of central-to-axial chirality conversions.

7.
European J Org Chem ; 2022(41): e202200879, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36632560

RESUMO

The development of novel and effective metal-free catalytic systems, which can drive value-added organic transformations in environmentally benign solvents (for instance, water), is highly desirable. Moreover, these new catalysts need to be harmless, easy-to-prepare, and potentially recyclable. In this context, amine-rich carbon dots (CDs) have recently emerged as promising nano-catalytic platforms. These nitrogen-doped nanoparticles, which show dimensions smaller than 10 nm, generally consist of carbon cores that are surrounded by shells containing numerous amino groups. In recent years, organic chemists have used these surface amines to guide the design of several synthetic methodologies under mild operative conditions. This Concept highlights the recent advances in the synthesis of amine-rich carbon dots and their applications in organic catalysis, including forward-looking opportunities within this research field.

8.
Chem Sci ; 12(30): 10233-10241, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34447530

RESUMO

Currently, conventional reductive catalytic methodologies do not guarantee general access to enantioenriched ß-branched ß-trifluoromethyl α-amino acid derivatives. Herein, a one-pot approach to these important α-amino acids, grounded on the reduction - ring opening of Erlenmeyer-Plöchl azlactones, is presented. The configurations of the two chirality centers of the products are established during each of the two catalytic steps, enabling a stereodivergent process.

9.
Angew Chem Int Ed Engl ; 60(34): 18728-18733, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34087048

RESUMO

Saturated carbonyl compounds are, via their enolate analogues, inherently nucleophilic at the α-position. In the presence of a benzoquinone oxidant, the polarity of the α-position of racemic α-branched aldehydes is inverted, allowing for an enantioselective etherification using readily available oxygen-based nucleophiles and an amino acid-derived primary amine catalyst. A survey of benzoquinone oxidants identified p-fluoranil and DDQ as suitable reaction partners. p-Fluoranil enables the preparation of α-aryloxylated aldehydes using phenol nucleophiles in up to 91 % ee, following either a one-step or a two-step, one-pot protocol. DDQ allows for a more general etherification protocol in combination with a broader range of alcohol nucleophiles with enantioselectivities up to 95 % ee. Control experiments and isolation of a key quinol intermediate supports a mechanism proceeding via an SN 2 dynamic-kinetic resolution. These studies provide the basis for an aminocatalytic umpolung concept that allows for the asymmetric construction of tertiary ethers in the α-position of aldehydes.

10.
Chemistry ; 25(68): 15694-15701, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31556176

RESUMO

The first stereoselective synthesis of enantioenriched axially chiral indole-quinoline systems is presented. The strategy takes advantage of an organocatalytic enantioselective Povarov cycloaddition of 3-alkenylindoles and N-arylimines, followed by an oxidative central-to-axial chirality conversion process, allowing for access to previously unreported axially chiral indole-quinoline biaryls. The methodology is also implemented for the design and the preparation of challenging compounds exhibiting two stereogenic axes. DFT calculations shed light on the stereoselectivity of the central-to-axial chirality conversion, showing unconventional behavior.

11.
Chemistry ; 24(55): 14844-14848, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992673

RESUMO

A novel strategy for the direct enantioselective oxidative homocoupling of α-branched aldehydes is presented. The methodology employs open-shell intermediates for the construction of chiral 1,4-dialdehydes by forming a carbon-carbon bond connecting two quaternary stereogenic centers in good yields and excellent stereoselectivities for electron-rich aromatic aldehydes. The 1,4-dialdehydes were transformed into synthetically valuable chiral pyrrolidines. Experimental mechanistic investigations based on competition experiments combined with computational studies indicate that the reaction proceeds through a radical cation intermediate and that reactivity and stereoselectivity follow different trends.

12.
Angew Chem Int Ed Engl ; 57(6): 1606-1610, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29265675

RESUMO

A novel concept for catalytic asymmetric coupling reactions is presented. Merging organocatalysis with single-electron oxidation by using a catalytic amount of a copper(II) salt and air as the terminal oxidant, we have developed a highly stereoselective carbon-carbon oxidative coupling reaction of α,ß-unsaturated aldehydes. The concept relies on the generation of a dienamine intermediate, which is oxidized to an open-shell activated species that undergoes highly selective γ-homo- and γ-heterocoupling reactions. In the majority of examples presented, only a single stereoisomer was formed.

13.
Chemistry ; 21(16): 6037-41, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766504

RESUMO

A new approach to the utilization of highly reactive and unstable ortho-quinone methides (o-QMs) in catalytic asymmetric settings is presented. The enantioselective reactions are catalysed by bifunctional organocatalysts, and the o-QM intermediates are formed in situ from 2-sulfonylalkyl phenols through base-promoted elimination of sulfinic acid. The use of mild Brønsted basic conditions for transiently generating o-QMs in catalytic asymmetric processes is unprecedented, and allows engaging productively in the reactions nucleophiles such as Meldrum's acid, malononitrile and 1,3-dicarbonyls. The catalytic transformations give new and general entries to 3,4-dihydrocoumarins, 4H-chromenes and xanthenones. These frameworks are recurring structures in natural product and medicinal chemistry, as testified by the formal syntheses of (R)-tolterodine and (S)-4-methoxydalbergione from the catalytic adducts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...