Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132926

RESUMO

Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.


Assuntos
Quitina , Quitosana , Colágeno , Animais , Materiais Biocompatíveis/economia , Quitina/economia , Quitosana/economia , Cosméticos , Preparações Farmacêuticas , Frutos do Mar , Colágeno/economia
2.
Ecotoxicol Environ Saf ; 150: 260-269, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289861

RESUMO

Soil contamination with metals is a widespread problem posing risks to humans and ecosystems. Metal contaminated soils often hold poor microbial density and biodiversity. Among soil bacteria, rhizobia have a great agronomic and environmental significance and are major contributors to a sustainable maintenance of soil fertility. This group of microorganisms are severely affected by metals, such as cadmium (Cd), but information about metal resistance mechanisms in rhizobia is still limited. A concerted approach of the different mechanisms conferring Cd tolerance to rhizobia was conducted using two Rhizobium strains with contrasting tolerances to Cd. Results show that both strains resort to the same mechanisms (extracellular immobilization, periplasmic allocation, cytoplasmic sequestration and biotransformation of toxic products) to overcome stress, but differences in the efficiencies of some mechanisms were noticed. The ability of Rhizobium to increase glutathione in the presence of Cd emerges as a central factor in the tolerance to Cd and is as a feature to be looked for when screening or transforming microorganisms to integrate plant-microbe consortia. These could promote plant growth at contaminated sites, being more efficient for the cleanup of metals from contaminated sites and the restoration of soil quality.


Assuntos
Cádmio/toxicidade , Rhizobium/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biodiversidade , Ecossistema , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Desenvolvimento Vegetal , Rhizobium/metabolismo , Solo/química
3.
Biometals ; 26(6): 879-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23907727

RESUMO

A high intraspecific difference in cadmium (Cd) tolerance exits among Rhizobium leguminosarum strains. The higher tolerance to Cd appeared to be related to the efficiency of the glutathione (GSH)-Cd chelation mechanism, but it is not known how efficiency is influenced. Thus, in this work it was intended to investigate the traits behind the efficiency of intracellular Cd chelation by GSH. Glutathione-S-transferases (GST; EC 2.5.1.18) are a family of multi-functional dimeric proteins, found in both prokaryotes and eukaryotes, which are implicated in a variety of stress conditions. The common feature of these enzymes is to catalyze the conjugation of the sulfur atom of GSH with a large variety of hydrophobic toxic compounds of both endogenous and exogenous origin. Taking into account the reactions catalyzed by GSTs, it was hypothesized that they could be involved in the GSH-Cd complex formation in R. leguminosarum. Differences in GSTs activity between strains could explain variation in Cd chelation efficiency detected among strains and, consequently, discrepancy in tolerance to Cd. Thus, GST isoforms of R. leguminosarum strains with distinct tolerances to Cd were purified and their activity investigated. The relationship between chelation efficiency and enzymatic activity of GSTs was demonstrated, supporting the hypothesis that GSTs, in particular one isoform, was involved in the formation of GSH-Cd complexes and in the tolerance of Rhizobium to Cd.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Cádmio/metabolismo , Quelantes/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Rhizobium leguminosarum/metabolismo , Proteínas de Bactérias/genética , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Expressão Gênica , Glutationa Transferase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Rhizobium leguminosarum/genética , Especificidade da Espécie , Especificidade por Substrato
4.
Chemosphere ; 76(10): 1348-55, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19595432

RESUMO

This work evaluates the role of a plant community in mercury (Hg) stabilization and mobility in a contaminated Portuguese salt marsh. With this aim, the distribution of Hg in below and aboveground tissues, as well as the metal partitioning between cellular fractions (soluble and insoluble) in four different species (Triglochin maritima L., Juncus maritimus Lam, Sarcocornia perennis (Miller) A.J. Scott, and Halimione portulacoides (L.) Aellen) was assessed. Mercury accumulation, translocation and compartmentation between organs and cellular fractions were related to the plant species. Results showed that the degree of Hg absorption and retention was influenced both by environmental parameters and metal translocation/partitioning strategies. Different plant species presented different allocation patterns, with marked differences between monocots (T. maritima and J. maritimus) and dicots (S. perennis, H. portulacoides). Overall, the two monocots, in particular T. maritima showed higher Hg retention in the belowground organs whereas the dicots, particularly S. perennis presented a more pronounced translocation to the aboveground tissues. Considering cellular Hg partitioning, all species showed a higher Hg binding to cell walls and membranes rather than in the soluble fractions. This strategy can be related to the high degree of tolerance observed in the studied species. These results indicate that the composition of salt marsh plant communities can be very important in dictating the Hg mobility within the marsh ecosystem and in the rest of the aquatic system as well as providing important insights to future phytoremediation approaches in Hg contaminated salt marshes.


Assuntos
Amaranthaceae/metabolismo , Mercúrio/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Tolerantes a Sal/metabolismo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...