Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Evol ; 51(6): 331-48, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9623909

RESUMO

Various vertebrate inner-ear end organs appear to have switched their sensory function between equilibrium sensing and acoustic sensing over the courses of various lines of evolution. It is possible that all that is required to make this transition is to provide an end organ with access to the appropriate stimulus mode and frequency range. If, as we believe, however, the adaptive advantage of an acoustic sensory system lies in its ability to sort the total acoustic input into components that correspond to individual acoustic sources, and the adaptive advantage of an equilibrium sensory system lies in its ability to compute the total orientation and motion of the head without regard to the individual sources contributing to that orientation and motion, then it is easy to argue that the differences between acoustic and equilibrium sensors should be more profound than simply access to the appropriate stimuli. Effective signal-sorting requires high resolution in both time and frequency; to achieve this resolution, a peripheral tuning structure must be one of high dynamic order (i.e., constructed from multiple independent energy storage elements). If the peripheral tuning structure simply converts head acceleration to head displacement, velocity, or jerk (i.e., provides one or two steps of integration or differentiation with respect to time, where one energy storage element per step is required), then high dynamic order is inappropriate. Because the bullfrog lagena possesses both acoustic and equilibrium sensitive regions, it is especially suited for comparing these two sensor types and addressing the question of dynamic order of tuning. In this paper we report observations of the linear tuning properties of bullfrog lagenar primary afferent nerve fibers obtained by stimulating the lagena with random, dorsoventral micromotion over the frequency range from 10 Hz to 1.0 kHz. Tuning curves obtained by reverse correlation analysis and discrete Fourier transformation were used to estimate the dynamic order of each fiber's associated peripheral tuning structure. We found two classes of lagenar afferent axons--those with lowpass amplitude tuning characteristics (44 units) and those with bandpass amplitude tuning characteristics (73 units). Lowpass units were found to originate at the equilibrium region of the macula, and they exhibited low dynamic order--summed low- and high-frequency slopes (absolute values) ranged from 10 dB/decade to 64 dB/decade, implying dynamic orders of less than one to three (the modal value was equal to one). Bandpass units were found to originate at the acoustic region of the macula, and they exhibited higher dynamic order than lowpass units--summed low- and high-frequency slopes (absolute values) ranged from 53 dB/decade to 185 dB/decade, implying dynamic orders of three to nine (the modal value was equal to five). It appears that while lagenar equilibrium and acoustic sensors both possess access to signals in the acoustic frequency range, lagenar acoustic sensors are tuned by means of peripheral structures with markedly greater dynamic order and consequently markedly greater physical complexity. These results suggest that steep-sloped (high-dynamic-order) tuning properties reflect special adaptations in acoustic sensors not found in equilibrium sensors, and that any evolutionary transition between the two sensor types must have involved profound structural changes.


Assuntos
Máculas Acústicas/inervação , Axônios/fisiologia , Evolução Biológica , Orelha Interna/inervação , Discriminação da Altura Tonal/fisiologia , Equilíbrio Postural/fisiologia , Rana catesbeiana/fisiologia , Animais , Vias Auditivas/fisiologia , Axônios/classificação , Axônios/ultraestrutura , Cinestesia/fisiologia , Filogenia , Rana catesbeiana/anatomia & histologia , Espectrografia do Som , Nervo Vestibulococlear/anatomia & histologia , Nervo Vestibulococlear/fisiologia
2.
J Vestib Res ; 6(2): 105-19, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8925113

RESUMO

A common property of vertebrate acoustic sensors, including otoconial acoustic sensors in lower vertebrates, is steep slopes on the high- and low-frequency band edges of the amplitude tuning curves. Bullfrog otoconial acoustic fibers are responsive to sound and exquisitely responsive to substrate vibrations in the frequency range from 20 Hz to 300 Hz. The sum of the absolute values of the two band-edge slopes of the amplitude tuning curve of such a fiber typically ranges from 100 dB/decade to 160 dB/decade (sometimes as high as 220 dB/decade), implying typical dynamic order of at least five to eight. We wondered if such steep slopes and the high dynamic order implied by them reflect special adaptations in acoustic sensors or if they are inherent in all lower-vertebrate otoconial sensors excited in this frequency range. To address this question, we examined the amplitude tuning characteristics of afferent nerve fibers from a bullfrog otoconial vestibular sensor in the same frequency range. In this paper, we report observations of tuning for bullfrog lagenar vestibular fibers in the frequency range from 10 Hz to approximately 500 Hz. To make these observations, we stimulated the frog with random dorsoventral motion that exhibited Gaussian amplitude distribution and that was flat in velocity from 10 Hz to 1.0 kHz. For each afferent fiber studied, we used discrete cross-correlation (between stimulus waveform and axon spike train) and discrete Fourier transformation to compute an amplitude tuning curve. In contrast with the amplitude tuning curve. In contrast with the amplitude tuning curves from saccular and lagenar acoustic fibers, those from the lagenar vestibular fibers typically had band-edge slopes whose absolute values summed to approximately 20 dB/decade, implying typical dynamic order of one. We conclude that steep band-edge slopes and high dynamic order are indeed special features of acoustic sensors, not shared by vestibular sensors.


Assuntos
Vias Aferentes/fisiologia , Nervo Vestibular/fisiologia , Animais , Eletrofisiologia , Cabeça/fisiologia , Modelos Neurológicos , Movimento (Física) , Fibras Nervosas/fisiologia , Rana catesbeiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...