Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 626404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659252

RESUMO

The protein kinase Akt/PKB participates in a great variety of processes, including translation, cell proliferation and survival, as well as malignant transformation and viral infection. In the last few years, novel Akt posttranslational modifications have been found. However, how these modification patterns affect Akt subcellular localization, target specificity and, in general, function is not thoroughly understood. Here, we postulate and experimentally demonstrate by acyl-biotin exchange (ABE) assay and 3H-palmitate metabolic labeling that Akt is S-palmitoylated, a modification related to protein sorting throughout subcellular membranes. Mutating cysteine 344 into serine blocked Akt S-palmitoylation and diminished its phosphorylation at two key sites, T308 and T450. Particularly, we show that palmitoylation-deficient Akt increases its recruitment to cytoplasmic structures that colocalize with lysosomes, a process stimulated during autophagy. Finally, we found that cysteine 344 in Akt1 is important for proper its function, since Akt1-C344S was unable to support adipocyte cell differentiation in vitro. These results add an unexpected new layer to the already complex Akt molecular code, improving our understanding of cell decision-making mechanisms such as cell survival, differentiation and death.

2.
J Biomed Biotechnol ; 2012: 483969, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093847

RESUMO

Apicomplexan parasites comprise a broad variety of protozoan parasites, including Toxoplasma gondii, Plasmodium, Eimeria, and Cryptosporidium species. Being intracellular parasites, the success in establishing pathogenesis relies in their ability to infect a host-cell and replicate within it. Protein palmitoylation is known to affect many aspects of cell biology. Furthermore, palmitoylation has recently been shown to affect important processes in T. gondii such as replication, invasion, and gliding. Thus, this paper focuses on the importance of protein palmitoylation in the pathogenesis of apicomplexan parasites.


Assuntos
Apicomplexa/fisiologia , Apicomplexa/parasitologia , Lipoilação/fisiologia , Proteínas de Protozoários/metabolismo
3.
Front Biosci (Schol Ed) ; 3(3): 1067-79, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622256

RESUMO

Palmitoylation plays an important role in the regulation of the localization and function of the modified protein. Although many aspects of protein palmitoylation have been identified in mammalian and yeast cells, little information is available of this modification in protozoan parasites. Protein palmitoylation has been described for a few set of proteins in E.tenella, P. falciparum, T. gondii, G. lamblia and T. cruzi. Interestingly, in all these parasites palmitoylated proteins appears to be involved in vital processes such as invasion and motility. In addition, most of these parasites contain in their genomes genes that encode for putative palmitoyl-acyl transferases, the enzymes catalyzing the palmitoylation reaction. Although protein palmitoylation could be playing key roles in invasion and motility in a variety of parasites, little is known about this important reversible modification of proteins that typically plays a role in membrane tethering. As such, this review will focus on the main features of protein palmitoylation as well as provide an overview of the state of knowledge of this modification in protozoan parasites.


Assuntos
Apicomplexa/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Apicomplexa/citologia , Lipoilação , Especificidade da Espécie
4.
J Biol Chem ; 279(53): 55682-9, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15485846

RESUMO

A number of cell types express inducible nitric-oxide synthase (NOS2) in response to exogenous insults such as bacterial lipopolysaccharide or proinflammatory cytokines. Although it has been known for some time that the N-terminal end of NOS2 suffers a post-translational modification, its exact identification has remained elusive. Using radioactive fatty acids, we show herein that NOS2 becomes thioacylated at Cys-3 with palmitic acid. Site-directed mutagenesis of this single residue results in the absence of the radiolabel incorporation. Acylation of NOS2 is completely indispensable for intracellular sorting and .NO synthesis. In fact, a C3S mutant of NOS2 is completely inactive and accumulates to intracellular membranes that almost totally co-localize with the Golgi marker beta-cop. Likewise, low concentrations of the palmitoylation blocking agents 2-Br-palmitate or 8-Br-palmitate severely affected the .NO synthesis of both NOS2 induced in muscular myotubes and transfected NOS2. However, unlike endothelial NOS, palmitoylation of inducible NOS is not involved in its targeting to caveolae. We have created 16 NOS2-GFP chimeras to inspect the effect of the neighboring residues of Cys-3 on the degree of palmitoylation. In this regard, the hydrophobic residue Pro-4 and the basic residue Lys-6 seem to be indispensable for palmitoylation. In addition, agents that block the endoplasmic reticulum to Golgi transit such as brefeldin A and monensin drastically reduced NOS2 activity leading to its accumulation in perinuclear areas. In summary, palmitoylation of NOS2 at Cys-3 is required for both its activity and proper intracellular localization.


Assuntos
Cisteína/química , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Ácido Palmítico/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Transporte Biológico , Compostos de Boro/farmacologia , Brefeldina A/farmacologia , Células COS , Linhagem Celular , Células Cultivadas , Clonagem Molecular , Escherichia coli/metabolismo , Corantes Fluorescentes/farmacologia , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hidroxilamina/química , Lisina/química , Camundongos , Dados de Sequência Molecular , Monensin/farmacologia , Mutagênese Sítio-Dirigida , Mutação , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II , Ácido Palmítico/química , Prolina/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Serina/química , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...