Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 290: 12-17, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524757

RESUMO

The electronic g factor carries highly useful information about the electronic structure of a paramagnetic species, such as spin-orbit coupling and dia- or paramagnetic (de-)shielding due to local fields of surrounding electron pairs. However, in many cases, a near "spin-only" case is observed, in particular for light elements, necessitating accurate and precise measurement of the g factors. Such measurement is typically impeded by a "chicken and egg situation": internal or external reference standards are used for relative comparison of electron paramagnetic resonance (EPR) Larmor frequencies. However, the g factor of the standard itself usually is subject to a significant uncertainty which directly limits the precision and/or accuracy of the sought after sample g factor. Here, we apply an EPR reference-free approach for determining the g factor of atomic nitrogen trapped within the endohedral fullerene C60:N@C60 in its polycrystalline state by measuring the 1H NMR resonance frequency of dispersing toluene at room temperature. We found a value of g=2.00204(4) with a finally reached relative precision of ∼20 ppm. This accurate measurement allows us to directly compare the electronic properties of N@C60 to those found in atomic nitrogen in the gas phase or trapped in other solid matrices at liquid helium temperature. We conclude that spin-orbit coupling in N@C60 at room temperature is very similar in magnitude and of same sign as found in other inert solid matrices and that interactions between the quartet spin system and the C60 molecular orbitals are thus negligible.

2.
J Chem Phys ; 141(6): 064202, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25134564

RESUMO

We report magic angle spinning, dynamic nuclear polarization (DNP) experiments at magnetic fields of 9.4 T, 14.1 T, and 18.8 T using the narrow line polarizing agents 1,3-bisdiphenylene-2-phenylallyl (BDPA) dispersed in polystyrene, and sulfonated-BDPA (SA-BDPA) and trityl OX063 in glassy glycerol/water matrices. The (1)H DNP enhancement field profiles of the BDPA radicals exhibit a significant DNP Overhauser effect (OE) as well as a solid effect (SE) despite the fact that these samples are insulating solids. In contrast, trityl exhibits only a SE enhancement. Data suggest that the appearance of the OE is due to rather strong electron-nuclear hyperfine couplings present in BDPA and SA-BDPA, which are absent in trityl and perdeuterated BDPA (d21-BDPA). In addition, and in contrast to other DNP mechanisms such as the solid effect or cross effect, the experimental data suggest that the OE in non-conducting solids scales favorably with magnetic field, increasing in magnitude in going from 5 T, to 9.4 T, to 14.1 T, and to 18.8 T. Simulations using a model two spin system consisting of an electron hyperfine coupled to a (1)H reproduce the essential features of the field profiles and indicate that the OE in these samples originates from the zero and double quantum cross relaxation induced by fluctuating hyperfine interactions between the intramolecular delocalized unpaired electrons and their neighboring nuclei, and that the size of these hyperfine couplings is crucial to the magnitude of the enhancements. Microwave power dependent studies show that the OE saturates at considerably lower power levels than the solid effect in the same samples. Our results provide new insights into the mechanism of the Overhauser effect, and also provide a new approach to perform DNP experiments in chemical, biophysical, and physical systems at high magnetic fields.


Assuntos
Compostos Alílicos/química , Glicerol/química , Poliestirenos/química , Água/química , Elétrons , Campos Magnéticos
3.
Phys Chem Chem Phys ; 9(46): 6063-72, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18167581

RESUMO

Single-wall carbon nanotubes (SWNT) prepared by the "super growth" method developed recently exhibit electron paramagnetic resonance (EPR) signals, which can be attributed to itinerant spins. EPR results indicate very low defect and catalyst concentrations in this superior material. Under these conditions EPR can be used to study details of charge transport properties over a wide temperature range, although the material is still very "heterogeneous" with respect to tube diameter and chirality. Non-resonant microwave absorption in the temperature range below 20 K is indicative for the opening of a small gap at the Fermi energy for tubes of metallic character, which is indicative for a transition into a superconducting state. Using SWNT filled partially with an endohedral spin probe like N@C(60), such "peapods" can be investigated "from the inside". Continuous-wave (cw) and pulsed EPR was used to investigate localization dynamics within the tubes or to check for interaction with itinerant electrons. Using SWNT grown by different methods, the dominant influence of tube diameter on fullerene dynamics was revealed by temperature dependent pulsed EPR experiments. These differences can be correlated with the interactions between the endohedral observer spin and spins on the SWNT.

4.
J Phys Chem B ; 110(30): 15012-20, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869616

RESUMO

The double-bridged hemicarcerand [A,B-(CH2OH)2-cavitand]-(CH2NHCH2)2-[A,B-(CH2OH)2-cavitand] 23 (and several other related compounds) was synthesized by the condensation of the two complementary precursors A,B-(CH2NH2)2(CH2OH)2-cavitand and A,B-(CH2Br)2(CH2OAc)2-cavitand followed by hydrolysis of the acetate groups. This hemicarcerand has nitrogen and oxygen donor atoms located on the interior of the spherical cavity and thus allows endohedral coordination of metal ions. The cavity has a volume of approximately 0.12 nm3, a value obtained by calculating a Connolly-type contact surface and the molecular electrostatic potential. The Cu2+ complex of hemicarcerand 23 was studied in detail by EPR and DFT calculations at the UB3LYP/6-31G level to verify the anticipated endohedral nature of the metal complex. It could be shown that the copper ion is coordinated to four oxygen donor atoms and no deviation from axial symmetry at the copper site could be detected. No direct coordination to nitrogen atoms of the hemicarcerand could be observed; however, complexation with DMF solvent molecules was detected by ESEEM and HYSCORE experiments. The closed structure of the hemicarcerand was also confirmed by an evaluation of proton-copper distances. Results from DFT calculations are in accord with the EPR results, and further support suggested coordination of the Cu(II) within the hemicarcerand cavity by four oxygen donor atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...