Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 481: 153340, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183849

RESUMO

Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24 h after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.


Assuntos
Pulmão , Mucosa Respiratória , Ratos , Humanos , Animais , Mucosa Respiratória/metabolismo , Administração por Inalação , Aerossóis/metabolismo
2.
PLoS One ; 17(8): e0272645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939452

RESUMO

The Rad9-Rad1-Hus1 checkpoint clamp activates the DNA damage response and promotes DNA repair. DNA loading on the central channel of the Rad9-Rad1-Hus1 complex is required to execute its biological functions. Because Rad9A has the highest DNA affinity among the three subunits, we determined the domains and functional residues of human Rad9A that are critical for DNA interaction. The N-terminal globular domain (residues 1-133) had 3.7-fold better DNA binding affinity than the C-terminal globular domain (residues 134-266) of Rad9A1-266. Rad9A1-266 binds DNA 16-, 60-, and 30-fold better than Rad9A1-133, Rad9A134-266, and Rad9A94-266, respectively, indicating that different regions cooperatively contribute to DNA binding. We show that basic residues including K11, K15, R22, K78, K220, and R223 are important for DNA binding. The reductions on DNA binding of Ala substituted mutants of these basic residues show synergistic effect and are dependent on their residential Rad9A deletion constructs. Interestingly, deletion of a loop (residues 160-163) of Rad9A94-266 weakens DNA binding activity by 4.1-fold as compared to wild-type (WT) Rad9A94-266. Cellular sensitivity to genotoxin of rad9A knockout cells is restored by expressing WT-Rad9Afull. However, rad9A knockout cells expressing Rad9A mutants defective in DNA binding are more sensitive to H2O2 as compared to cells expressing WT-Rad9Afull. Only the rad9A knockout cells expressing loop-deleted Rad9A mutant are more sensitive to hydroxyurea than cells expressing WT-Rad9A. In addition, Rad9A-DNA interaction is required for DNA damage signaling activation. Our results indicate that DNA association by Rad9A is critical for maintaining cell viability and checkpoint activation under stress.


Assuntos
Exonucleases , Peróxido de Hidrogênio , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Exonucleases/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...