Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1423500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050374

RESUMO

Bioactive peptides derived from plant sources have gained significant attention for their potential use in preventing and treating chronic degenerative diseases. However, the efficacy of these peptides depends on their bioaccessibility, bioavailability, and stability. Encapsulation is a promising strategy for improving the therapeutic use of these compounds. It enhances their stability, prolongs their shelf life, protects them from degradation during digestion, and enables better release control by improving their bioaccessibility and bioavailability. This review aims to analyze the impact of various factors related to peptide encapsulation on their stability and release to enhance their biological activity. To achieve this, it is necessary to determine the composition and physicochemical properties of the capsule, which are influenced by the wall materials, encapsulation technique, and operating conditions. Furthermore, for peptide encapsulation, their charge, size, and hydrophobicity must be considered. Recent research has focused on the advancement of novel encapsulation methodologies that permit the formation of uniform capsules in terms of size and shape. In addition, it explores novel wall materials, including polysaccharides derived from unconventional sources, that allow the precise regulation of the rate at which peptides are released into the intestine.

2.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064822

RESUMO

Chysobalanus icaco L. (C. icaco) is a plant that is native to tropical America and Africa. It is also found in the southeast region of Mexico, where it is used as food and to treat certain diseases. This study aimed to carry out a phytochemical analysis of an aqueous extract of C. icaco seed (AECS), including its total phenol content (TPC), total flavonoid content (TFC), and condensed tannins (CT). It also aimed to examine the antioxidant and metal-ion-reducing potential of the AECS in vitro, as well as its toxicity and anti-inflammatory effect in mice. Antioxidant and metal-ion-reducing potential was examined by inhibiting DPPH, ABTS, and FRAP. The acute toxicity test involved a single administration of different doses of the AECS (0.5, 1, and 2 g/kg body weight). Finally, a single administration at doses of 150, 300, and 600 mg/kg of the AECS was used in the carrageenan-induced model of subplantar acute edema. The results showed that the AECS contained 124.14 ± 0.32 mg GAE, 1.65 ± 0.02 mg EQ, and 0.910 ± 0.01 mg of catechin equivalents/g dried extract (mg EC/g de extract) for TPC, TFC and CT, respectively. In the antioxidant potential assays, the values of the median inhibition concentration (IC50) of the AECS were determined with DPPH (0.050 mg/mL), ABTS (0.074 mg/mL), and FRAP (0.49 mg/mL). Acute toxicity testing of the AECS revealed no lethality, with a median lethal dose (LD50) value of >2 g/kg by the intragastric route. Finally, for inhibition of acute edema, the AECS decreased inflammation by 55%, similar to indomethacin (59%, p > 0.05). These results demonstrated that C. icaco seed could be considered a source of bioactive molecules for therapeutic purposes due to its antioxidant potential and anti-inflammatory activity derived from TPC, with no lethal effect from a single intragastric administration in mice.


Assuntos
Anti-Inflamatórios , Antioxidantes , Edema , Extratos Vegetais , Sementes , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Sementes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Edema/tratamento farmacológico , Edema/induzido quimicamente , Carragenina/toxicidade , Flavonoides/farmacologia , Flavonoides/química , Modelos Animais de Doenças , Testes de Toxicidade Aguda , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Masculino , Fenóis/química , Fenóis/farmacologia
3.
Food Sci Biotechnol ; 33(4): 889-902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371689

RESUMO

Edible films elaborated from macromolecules, like carbohydrates, proteins, and lipids, must protect and maintain the integrity of foods during their handling, storage, and transportation. In this work, the effect of the concentration of zein (1-2% w/v), sodium alginate (1.5-2% w/v), and glycerol (2-4% w/v) on edible films physicochemical properties was evaluated. The Zein-Alginate-Glycerol interaction was evidenced by the FTIR analysis, the high permeability to water vapor and contact angles less than 90° of the polymer matrices formed. The film made with 2% zein, 1.5% sodium alginate and 4% glycerol preserved the quality of the chili pepper during 15 days of storage at 20 °C, the edible films allowed 3 more days of shelf life for weight loss and 10 more days for firmness. Edible films could be used in chili peppers that are destined for industrial processing, and before use, remove the film with a simple wash. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01393-z.

4.
Molecules ; 25(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213962

RESUMO

The common bean is an important caloric-protein food source. However, its nutritional value may be affected by the presence of non-nutritional compounds, which decrease the assimilation of some nutrients; however, at low concentrations, they show a beneficial effect. Germination and treatment by controlled pressure-drop (DIC, French acronym of Détente Instantanée Contrôlée) are methods that modify the concentration of these components. The objective of this work was to evaluate the change in the non-nutritional composition of bean seeds and sprouts by DIC treatment. The results show that with the germination, the concentration of phenolic and tannin compounds increased 99% and 73%, respectively, as well as the quantity of saponins (65.7%), while phytates and trypsin inhibitors decreased 26% and 42%, respectively. When applying the DIC treatment, the content of phytates (23-29%), saponins (44%) and oligosaccharides increased in bean sprouts and decreased phenolic compounds (4-14%), tannins (23% to 72%), and trypsin inhibitors (95.5%), according to the pressure and time conditions applied. This technology opens the way to new perspectives, especially to more effective use of legumes as a source of vegetable protein or bioactive compounds.


Assuntos
Phaseolus/metabolismo , Sementes/metabolismo , Germinação/fisiologia , Oligossacarídeos/metabolismo , Phaseolus/fisiologia , Fenóis/metabolismo , Ácido Fítico/metabolismo , Sementes/fisiologia , Inibidores da Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA