Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834608

RESUMO

This study aims to investigate the optical properties of multiple neodymium-doped gadolinium compounds as a means to examine their eligibility as optical probes for fluorescence imaging. GdVO4, GdPO4, GdAlO3, Gd2SiO5 and Gd3Ga5O12 (GGG) samples were synthesized through solid-state reactions with varying neodymium doping levels to compare their optical properties in great detail. The optimal doping concentration was generally found to be approximately 2%. Furthermore, the luminescence lifetime, which is a valuable parameter for time-gated imaging, was determined to range from 276 down to 14 µs for the highest doping concentrations, resulting from energy transfer and migration assisted decay.

2.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770991

RESUMO

Photocatalytic nanomaterials, using only light as the source of excitation, have been developed for the breakdown of volatile organic compounds (VOCs) in air for a long time. It is a tough challenge to immobilize these powder photocatalysts and prevent their entrainment with the gas stream. Conventional methods for making stable films typically require expensive deposition equipment and only allow the deposition of very thin layers with limited photocatalytic performance. The present work presents an alternative approach, using the combination of commercially available photocatalytic nanopowders and a polymer or inorganic sol-gel-based matrix. Analysis of the photocatalytic degradation of ethanol was studied for these layers on metallic substrates, proving a difference in photocatalytic activity for different types of stable layers. The sol-gel-based TiO2 layers showed an improved photocatalytic activity of the nanomaterials compared with the polymer TiO2 layers. In addition, the used preparation methods require only a limited amount of photocatalyst, little equipment, and allow easy upscaling.

3.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388747

RESUMO

In recent years, nanoparticles have come under close scrutiny for their possible health and environmental issues, making them less attractive for photocatalytic applications in air or water purification. Replacing free nano-powders with active and stable films is thus a fundamental step towards developing effective photocatalytic devices. Aluminum represents a cheap and technologically-relevant substrate, but its photocatalytic applications have been hampered by adhesion issues and metal ion diffusion within the photocatalytic layer. In this work, the use of silica interlayers is investigated as a strategy to promote adhesion, efficiency and reusability of TiO2films deposited on aluminum plates. Films were prepared from stable titania sols to avoid the use of nano-powders. Aluminum substrates with different surface morphology were investigated and the role of the silica interlayer thickness was studied. Films were extensively characterized, studying their structure, morphology, optical properties, adhesion and hardness. Self-cleaning properties were studied with respect to their superhydrophilicity and ability to resist fouling via alkylsilanes. Photocatalytic degradation tests were carried out using both volatile organic compounds and NOx, also in recycle tests. The presence of the silica interlayer proved crucial to promote the film robustness and photocatalytic activity. The substrate morphology determined the optimal interlayer thickness, especially in terms of the film reusability.

4.
Materials (Basel) ; 13(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806721

RESUMO

Many medical imaging techniques use some form of ionizing radiation. This radiation is not only potentially harmful for the patient, but also for the medical personnel. An alternative imaging technique uses near-infrared (NIR) emitting luminescent particles as tracers. If the luminescent probes are excited inside the body, autofluorescence from the biological tissues is also induced. This problem can be circumvented by using time-gated imaging. Hereby, the light collection only starts when the fluorescence of the tissue has decayed. This requires particles showing both excitation and emission in the near-infrared and a long decay time so that they can be used in time-gated imaging. In this work, Nd-doped GdVO4 NIR emitting particles were prepared using solid state reaction. Particles could be efficiently excited at 808 nm, right in the first transparency window for biological tissues, emitted in the second transparency window at around 1064 nm, and showed a decay time of the order of 70 µs, sufficiently long for time-gating. By using a Gd-containing host, these particles could be ideally suited for multimodal optical/magnetic imaging after size reduction and surface functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...