Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 48, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413974

RESUMO

BACKGROUND: Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. RESULTS: We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. CONCLUSIONS: We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.


Assuntos
Células-Tronco Neurais , Via de Sinalização Wnt , Humanos , Cílios/metabolismo , Neurônios/fisiologia , Diferenciação Celular , Células-Tronco Neurais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Methods Cell Biol ; 176: 27-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164541

RESUMO

Primary cilia are antenna-like organelles emanating from the cell surface. They are involved in cell-to-cell communication and bidirectional signal transduction to/from the extracellular environment. During brain formation, cilia critically aid in neurogenesis and maturation of neuronal structures such as axons, dendrites and synapses. Aberrations in cilia function can induce neuron differentiation defects and pathological consequences of varying severity, resulting in ciliopathies and likely a number of neurodevelopmental disorders. Despite the documented relevance of cilia for proper brain development, human neuronal models to recognize and study cilia biology are still scarce. We have established two types of cell models, Lund Human Mesencephalic (LUHMES) cells and neuroepithelial stem (NES) cells derived from induced pluripotent stem cells (iPSC), to investigate cilia biology in both proliferating neuronal progenitors/precursors and during the entire neuron differentiation and maturation process. We employ improved immunocytochemistry assays able to specifically detect cilia by confocal and super-resolution microscopy. We provide straightforward and robust methods to easily maintain cells in culture, for immunostaining and characterization of cilia orientation, anatomy and shape in human neurons across all stages of differentiation.


Assuntos
Cílios , Células-Tronco Pluripotentes Induzidas , Humanos , Cílios/fisiologia , Neurônios/metabolismo , Diferenciação Celular , Neurogênese/fisiologia
3.
J Cell Sci ; 133(21)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33115758

RESUMO

Many human cell types are ciliated, including neural progenitors and differentiated neurons. Ciliopathies are characterized by defective cilia and comprise various disease states, including brain phenotypes, where the underlying biological pathways are largely unknown. Our understanding of neuronal cilia is rudimentary, and an easy-to-maintain, ciliated human neuronal cell model is absent. The Lund human mesencephalic (LUHMES) cell line is a ciliated neuronal cell line derived from human fetal mesencephalon. LUHMES cells can easily be maintained and differentiated into mature, functional neurons within one week. They have a single primary cilium as proliferating progenitor cells and as postmitotic, differentiating neurons. These developmental stages are completely separable within one day of culture condition change. The sonic hedgehog (SHH) signaling pathway is active in differentiating LUHMES neurons. RNA-sequencing timecourse analyses reveal molecular pathways and gene-regulatory networks critical for ciliogenesis and axon outgrowth at the interface between progenitor cell proliferation, polarization and neuronal differentiation. Gene expression dynamics of cultured LUHMES neurons faithfully mimic the corresponding in vivo dynamics of human fetal midbrain. In LUHMES cells, neuronal cilia biology can be investigated from proliferation through differentiation to mature neurons.


Assuntos
Proteínas Hedgehog , Mesencéfalo , Diferenciação Celular , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Neurônios/metabolismo , Transdução de Sinais
4.
Sci Rep ; 8(1): 13263, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185873

RESUMO

Peptidyl arginine deiminases (PADIs) are enzymes that change the charge of proteins through citrullination. We recently found Padi2 was expressed exclusively in fetal Sertoli cells. In this study, we analyzed the transcriptional regulation of Padi2 and the role of PADI2 in testicular development. We showed SOX9 positively regulated Padi2 transcription and FOXL2 antagonized it in TM3 cells, a model of Sertoli cells. The responsive region to SOX9 and FOXL2 was identified within the Padi2 sequence by reporter assay. In fetal testes from Sox9 knockout (AMH-Cre:Sox9flox/flox) mice, Padi2 expression was greatly reduced, indicating SOX9 regulates Padi2 in vivo. In vitro analysis using siRNA suggested PADI2 modified transcriptional regulation by SOX9. However, Padi2-/- XY mice were fertile and showed no apparent reproductive anomalies. Although, PADI2 is known as an epigenetic transcriptional regulator through H3 citrullination, no significant difference in H3 citrullination between wildtype and Padi2-/- XY gonads was observed. These results suggest Padi2 is a novel gene involved in testis development that is specifically expressed in Sertoli cells through the regulation by SOX9 and FOXL2 and PADI2 supports regulation of target genes by SOX9. Analysis of the Padi2-/- XY phenotype suggested a redundant factor compensated for PADI2 function in testicular development.


Assuntos
Desiminases de Arginina em Proteínas/biossíntese , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/metabolismo , Testículo/embriologia , Animais , Linhagem Celular , Proteína Forkhead Box L2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Fatores de Transcrição SOX9/genética , Células de Sertoli/citologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...