Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 8: 101348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430251

RESUMO

The expression of c-fos mRNA is an indirect marker of neuronal activity. RNAscope ACD Bio RNAscope (now Biotechne) is a proprietary in-situ mRNA detection technology using branched DNA amplification and z paired probes to deliver a robust and specific assay designed primarily for use on formalin fixed paraffin sections [1]. In the present study we adapted this technology to be used in frozen sections to allow quantitative analysis of c-fos gene expression in different mouse brain regions during neuropharmacology studies. The method was applied by Cosi et al. 2021 [2] and the image analysis is described here in details. •The patented RNAscope (ACD Bio) flourescent in-situ hybridisation technology designed primarily for use on formalin fixed paraffin sections was adapted to be used on frozen section from mouse brain.•We carefully controlled sample preparation and handling to maximise mRNA preservation and used the fluorescent properties of the fast Red substrate combined with fluorescent whole slide scanning and image analysis.•A customized algorithm was set up for image analysis•The method developed permitted the quantitative analysis of c-fos expression in specific brain regions from whole sections.

2.
Eur J Pharmacol ; 890: 173635, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33065094

RESUMO

F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.


Assuntos
Antipsicóticos/farmacologia , Benzopiranos/farmacologia , Antagonistas de Dopamina/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antipsicóticos/uso terapêutico , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Benzopiranos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalepsia/tratamento farmacológico , Células Cultivadas , Dopamina/metabolismo , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Genes fos/efeitos dos fármacos , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Piperazinas/uso terapêutico , Prolactina/sangue , Ratos Sprague-Dawley , Receptores de Dopamina D3/metabolismo , Sulfonamidas/uso terapêutico , Ácido Valproico/toxicidade
3.
J Pharm Pharmacol ; 69(9): 1178-1190, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28612503

RESUMO

OBJECTIVES: NLX-112 (befiradol, F13640) is a selective serotonin 5-HT1A receptor agonist. Although it has been tested in vivo, little has been reported on its in vitro signal transduction profile. METHODS: NLX-112 was tested on G-protein activation, inhibition of adenylyl cyclase, ERK1/2 phosphorylation (pERK) and receptor internalization in recombinant cell lines. NLX-112 was also tested on G-protein activation in rat hippocampal membranes. Gα subunit mRNA expression in cell lines and rat brain tissue was quantified by quantitative PCR. KEY FINDINGS: For all signalling measures, NLX-112 exhibited agonist efficacy greater than for reference compounds ((±)8-OH-DPAT or buspirone), but similar to the endogenous agonist, serotonin, and was more potent for pERK than other responses. In rat hippocampal membranes, NLX-112 stimulated 'total G-proteins' but, unlike (±)8-OH-DPAT and buspirone, was more potent for Gαo activation. Cell lines predominantly expressed Gαi1 and Gαi2 mRNA, with low levels of Gαo, whereas in rat brain Gαo subunits showed highest mRNA expression. CONCLUSIONS: Unlike reference compounds, NLX-112 was a highly efficacious agonist in vitro, preferentially activating pERK in cell lines and Gαo proteins in rat hippocampal membranes. However, Gα subunit mRNA levels differ markedly between rat brain and cell lines, warranting caution when extrapolating from recombinant systems to native tissues.


Assuntos
Piperidinas/farmacologia , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
4.
Neuropharmacology ; 60(7-8): 1227-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21110987

RESUMO

G-protein coupled receptor 35 (GPR35) is a former "orphan receptor" expressed in brain and activated by either kynurenic acid or zaprinast. While zaprinast has been studied as a phosphodiesterase inhibitor, kynurenic acid (KYNA) is a tryptophan metabolite and has been proposed as the endogenous ligand for this receptor. In the present work, we showed that GPR35 is present in the dorsal root ganglia and in the spinal cord and in order to test the hypothesis that GPR35 activation could cause analgesia, we administered suitable doses of zaprinast or we increased the local concentration of KYNA by administering a precursor (kynurenine) or by inhibiting its disposal from the CNS (with probenecid). We used the "writhing test" induced by acetic acid i.p. injection in mice. KYNA and kynurenine plasma and spinal cord levels were measured with HPLC techniques. Kynurenine (30, 100, 300 mg/kg s.c.) increased plasma and spinal cord levels of KYNA and decreased the number of writhes in a dose dependent manner. Similarly, probenecid was able to increase KYNA levels in plasma and spinal cord, to reduce the number of writes and to amplify kynurenine effects. Furthermore, zaprinast had antinociceptive effects in the writhing test without affecting KYNA levels. In agreement with its affinity for GPR35 receptor (approximately 10 times higher than that of KYNA), zaprinast action occurred at relatively low doses. No additive actions were obtained when kynurenine and zaprinast were administered at maximally active doses. Our results suggest that GPR35 could be an interesting target for innovative pharmacological agents designed to reduce inflammatory pain. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.


Assuntos
Ácido Cinurênico/metabolismo , Dor/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Purinonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Analgésicos/sangue , Analgésicos/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Ácido Cinurênico/sangue , Cinurenina/sangue , Cinurenina/farmacologia , Masculino , Camundongos , Neuroglia/metabolismo , Dor/induzido quimicamente , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Inibidores de Fosfodiesterase/sangue , Probenecid/sangue , Probenecid/farmacologia , Purinonas/sangue , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Triptofano/metabolismo
5.
Eur J Pharmacol ; 535(1-3): 135-44, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16554049

RESUMO

Dopamine D2 receptor antagonists induce hyperprolactinemia depending on the extent of D2 receptor blockade. We compared the effects of the new antipsychotic agents SSR181507 ((3-exo)-8-benzoyl-N-[[(2 s)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo[3.2.1]octane-3-methanamine monohydrochloride), bifeprunox (DU127090: 1-(2-Oxo-benzoxazolin-7-yl)-4-(3-biphenyl)methylpiperazinemesylate) and SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluorophenyl)-pyridin-3-ylmethyl]-piperazine) with those of aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-butyloxy)-3,4-dihydro-2(1 H)-quinolinone), clozapine and haloperidol, on functional measures of dopamine D2 receptor activity in vitro and in vivo: [35S]-GTPgammaS binding to membranes from Sf9 insect cells expressing human dopamine D2 Long (hD2 L) receptors, and serum prolactin levels in the rat. All compounds antagonized apomorphine-induced G protein activation at dopamine hD2 L receptors. Antagonist potencies of aripiprazole, bifeprunox and SLV313 were similar to haloperidol (pK(b) = 9.12), whereas SSR181507 (8.16) and clozapine (7.35) were less potent. Haloperidol, SLV313 and clozapine were silent antagonists but SSR181507, bifeprunox and aripiprazole stimulated [35S]-GTPgammaS binding by 17.5%, 26.3% and 25.6%, respectively, relative to 100 microM apomorphine (Emax = 100%). pEC50s were: SSR181507, 8.08; bifeprunox, 8.97; aripiprazole, 8.56. These effects were antagonized by raclopride. Following oral administration in vivo, the drugs increased prolactin release to different extents. SLV313 and haloperidol potently (ED50 0.12 and 0.22 mg/kg p.o., respectively) stimulated prolactin release up to 86 and 83 ng/ml. Aripiprazole potently (ED50 0.66 mg/kg p.o.) but partially (32 ng/ml) induced prolactin release. SSR181507 (ED50 4.9 mg/kg p.o.) also partially (23 ng/ml) enhanced prolactin release. Bifeprunox only weakly increased prolactin at high doses (13 ng/ml at 40 mg/kg) and clozapine only affected prolactin at the highest dose tested (41 ng/ml at 40 mg/kg). Prolactin levels of the corresponding vehicle-treated animals were <4.3 ng/ml. These data show that (1) SSR181507, aripiprazole and bifeprunox, but not SLV313, are partial agonists at dopamine hD2 L receptors in vitro; (2) SSR181507, bifeprunox and aripiprazole exhibit reduced prolactin release in vivo compared with drugs that are neutral antagonists at dopamine D2 receptors.


Assuntos
Antipsicóticos/farmacologia , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D2/agonistas , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Análise de Variância , Animais , Aripiprazol , Benzoxazóis/farmacologia , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular , Clozapina/farmacologia , Dioxanos/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Relação Dose-Resposta a Droga , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Haloperidol/farmacologia , Humanos , Masculino , Piperazinas/farmacologia , Prolactina/sangue , Quinolonas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Spodoptera , Radioisótopos de Enxofre , Tropanos/farmacologia
6.
Brain Res ; 1043(1-2): 32-41, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15862515

RESUMO

Excessive activation of non-NMDA receptors, AMPA and kainate, contributes to neuronal degeneration in acute and progressive pathologies, possibly including schizophrenia. Because 5-HT(1A) receptor agonists have neuroprotective properties (e.g., against NMDA-induced neurotoxicity), we compared the effects of the antipsychotics, clozapine, ziprasidone and aripiprazole, that are partial agonists at 5-HT(1A) receptor, with those of haloperidol, which is devoid of 5-HT(1A) agonist properties, on kainic acid (KA)-induced striatal lesion volumes, in C57Bl/6N mice. The involvement of 5-HT(1A) receptors was determined by antagonist studies with WAY100635, and data were compared with those obtained using the potent and high efficacy 5-HT(1A) receptor agonist, F13714. Intra-striatal KA lesioning and measurement of lesion volumes using cresyl violet staining were carried out at 48 h after surgery. F13714, antipsychotics or vehicle were administered ip twice, 30 min before and 3 1/2 h after KA injection. WAY100635 (0.63 mg/kg) or vehicle were given sc 30 min before each drug injection. Clozapine (2 x 10 mg/kg), ziprasidone (2 x 20 mg/kg) and aripiprazole (2 x 10 mg/kg) decreased lesion volume by 61%, 59% and 73%, respectively. WAY100635 antagonized the effect of ziprasidone and of aripiprazole but only slightly attenuated that of clozapine. In contrast, haloperidol (2 x 0.16 mg/kg) did not affect KA-induced lesion volume. F13714 dose-dependently decreased lesion volume. The 61% decrease of lesion volume obtained with F13714 (2 x 0.63 mg/kg) was antagonized by WAY100635. WAY100635 alone did not affect lesion volume. These results show that 5-HT(1A) receptor activation protects against KA-induced striatal lesions and indicate that some atypical antipsychotic agents with 5-HT(1A) agonist properties may protect against excitotoxic injury, in vivo.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Corpo Estriado/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Receptor 5-HT1A de Serotonina/fisiologia , Aminopiridinas/farmacologia , Animais , Aripiprazol , Corpo Estriado/patologia , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Quinolonas/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas da Serotonina/farmacologia , Tiazóis/farmacologia
7.
Int J Neuropsychopharmacol ; 8(3): 341-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15707540

RESUMO

Serotonin 5-HT1A receptors are promising targets in the management of schizophrenia but little information exists about affinity and efficacy of novel antipsychotics at these sites. We addressed this issue by comparing binding affinity at 5-HT1A receptors with dopamine rD2 receptors, which are important targets for antipsychotic drug action. Agonist efficacy at 5-HT1A receptors was determined for G-protein activation and adenylyl cyclase activity. Whereas haloperidol, thioridazine, risperidone and olanzapine did not interact with 5-HT1A receptors, other antipsychotic agents exhibited agonist properties at these sites. E(max) values (% effect induced by 10 microM of 5-HT) for G-protein activation at rat brain 5-HT1A receptors: sarizotan (66.5), bifeprunox (35.9), SSR181507 (25.8), nemonapride (25.7), ziprasidone (20.6), SLV313 (19), aripiprazole (15), tiospirone (8.9). These data were highly correlated with results obtained at recombinant human 5-HT1A receptors in determinations of G-protein activation and inhibition of forskolin-stimulated adenylyl cyclase. In binding-affinity determinations, the antipsychotics exhibited diverse properties at r5-HT1A receptors: sarizotan (pK(i)=8.65), SLV313 (8.64), SSR181507 (8.53), nemonapride (8.35), ziprasidone (8.30), tiospirone (8.22), aripiprazole (7.42), bifeprunox (7.19) and clozapine (6.31). The affinity ratios of the ligands at 5-HT1A vs. D2 receptors also varied widely: ziprasidone, SSR181507 and SLV313 had similar affinities whereas aripiprazole, nemonapride and bifeprunox were more potent at D2 than 5-HT1A receptors. Taken together, these data indicate that aripiprazole has low efficacy and modest affinity at 5-HT1A receptors, whereas bifeprunox has low affinity but high efficacy. In contrast, SSR181507 has intermediate efficacy but high affinity, and is likely to have more prominent 5-HT1A receptor agonist properties. Thus, the contribution of 5-HT1A receptor activation to the pharmacological profile of action of the antipsychotics will depend on the relative 5-HT1A/D2 affinities and on 5-HT1A agonist efficacy of the drugs.


Assuntos
Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacocinética , Adenilil Ciclases/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Encéfalo/citologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Células HeLa/efeitos dos fármacos , Humanos , Isótopos de Fósforo/farmacocinética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Proteínas Recombinantes/farmacologia , Antagonistas da Serotonina/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Trítio/farmacocinética
8.
Psychopharmacology (Berl) ; 177(4): 373-80, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15448976

RESUMO

RATIONALE: Recent studies suggest that alpha(2) adrenoceptor blockade may improve the antipsychotic-like effects of neuroleptics and attenuate dopamine D(2) receptor antagonist-induced catalepsy. However, several alpha(2) adrenergic antagonists also display serotonin 5-HT(1A) receptor agonist activity, which may contribute to anticataleptic actions. OBJECTIVES: In this study, we examined a series of alpha(2) adrenergic antagonists to determine the role of activity at serotonin 5-HT(1A) receptors in their anticataleptic effects. METHODS: Catalepsy in rats induced by the antipsychotic haloperidol (2.5 mg/kg, SC) was measured using the cross-legged position (CLP) and bar tests. The compounds examined in this study, in decreasing rank order of alpha(2) adrenergic versus 5-HT(1A) receptor selectivity, were atipamezole, methoxy-idazoxan (RX821002), efaroxan, idazoxan, and yohimbine. Antagonism studies were conducted using the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide dihydrochloride (WAY100635). RESULTS: Idazoxan, efaroxan, and yohimbine significantly attenuated the cataleptic effects of haloperidol (2.5 mg/kg, SC) in the CLP test and the actions of their highest doses were significantly blocked by pre-treatment with WAY100635 (0.63 mg/kg, SC). In contrast to the other compounds, methoxy-idazoxan was ineffective in the CLP test. Atipamezole exhibited anticataleptic effects in the bar and CLP tests which were not blocked by WAY100635. Similarly, the anticataleptic effects of methoxy-idazoxan and idazoxan in the bar test were not blocked by WAY100635. CONCLUSIONS: Serotonin 5-HT(1A) receptors play a prominent role in anticataleptic effects of certain alpha(2) adrenergic antagonists in the CLP test, whereas alpha(2)-adrenergic mechanisms are likely to be primarily responsible for the anticataleptic effects of these ligands in the bar test.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2 , Antagonistas Adrenérgicos alfa/uso terapêutico , Catalepsia/tratamento farmacológico , Postura/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Antagonistas de Dopamina , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Haloperidol , Masculino , Piperazinas/farmacologia , Piridinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
9.
J Neurochem ; 88(6): 1449-54, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15009646

RESUMO

Ataxia-telangiectasia (A-T) is a genetic disease, associated with progressive motor impairment and a lack of functional ATM protein. It has been reported that immunoreactive tyrosine hydroxylase and dopamine transporter are reduced in an Atm-/- mouse model of A-T. These observations led to a hypothesis that A-T is associated with loss of nigrostriatal dopamine and prompted the launch of clinical trials to evaluate a therapeutic utility of the anti-parkinsonian drug, l-DOPA. To test for dopamine depletion more directly, we measured regional levels of monoamines and their metabolites in the Atm-/- mouse brain. We also measured levels of NAD+, a cofactor for dopamine biosynthesis and substrate of the DNA damage surveillance enzyme, poly(ADP-ribose) polymerase (PARP). Constitutive activation of PARP has been posited to cause NAD+ depletion. We observed no reduction in monoamine transmitters and no depletion of NAD+, or other high energy phosphate donors in the adult Atm-/- cerebellum, striatum, or ventral mesencephalon. However, our studies did reveal a progressive sensorimotor impairment in Atm-/- mice that may serve as a relevant proxy for progressive neurological impairment in the human disease. Our results call into question the involvement of dopamine in A-T and the therapeutic strategy of enhancing dopaminergic function with l-DOPA.


Assuntos
Ataxia Telangiectasia/fisiopatologia , Dopamina/análogos & derivados , Dopamina/metabolismo , NAD/metabolismo , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/análise , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Comportamento Animal/fisiologia , Monoaminas Biogênicas/análise , Monoaminas Biogênicas/metabolismo , Química Encefálica , Catecolaminas/análise , Catecolaminas/metabolismo , Proteínas de Ciclo Celular , Cerebelo/química , Cerebelo/metabolismo , Corpo Estriado/química , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Progressão da Doença , Dopamina/análise , Mesencéfalo/química , Mesencéfalo/metabolismo , Camundongos , Camundongos Knockout , NAD/análise , NADP/análise , NADP/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Desempenho Psicomotor/fisiologia , Fatores Sexuais , Proteínas Supressoras de Tumor
10.
Brain Res ; 996(1): 1-8, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14670625

RESUMO

Overactivation of poly(ADP-ribose) polymerase (PARP) in response to genotoxic insults can cause cell death by energy deprivation. We previously reported that neurotoxic amounts of kainic acid (KA) injected into the rat striatum produce time-dependent changes in striatal PARP activity in vivo. Here, we have investigated the time-course of KA-induced toxicity and the effects of the PARP inhibitor benzamide on KA, AMPA and NMDA neurotoxicities in vivo, by measuring changes in the volume of the lesion and in NAD+ and ATP levels induced by the intra-striatal injection of these excitotoxins in C57Bl/6N mice. The KA-induced lesion volume was dependent on the amount of toxin injected and the survival time. The lesion was well developed at 48 h and was almost undetectable after one week. KA produced an extensive astrogliosis at one week. Benzamide partially prevented both KA- and NMDA- but not AMPA-induced lesions when measured at 48 h after the treatment. The effects of benzamide appeared to be in part related to changes in energy metabolism, since KA produced decreases in striatal levels of NAD+ and ATP that were partially prevented by benzamide at 48 h and which returned to control levels at one week. NMDA did not affect NAD+ and induced little alteration in ATP levels. Benzamide had no effect on AMPA-induced decreases in either NAD+ or ATP levels at 48 h. These results (1) indicate that PARP overactivation and energy depletion could be responsible in part for the cellular demise during the development of the lesion induced by KA; (2) confirm that PARP is involved in NMDA but not AMPA toxicities; (3) suggest the existence of differences between KA and AMPA-mediated toxicities; and (4) provide further evidence supporting PARP as a novel target for new drug treatments against neurodegenerative disorders.


Assuntos
Benzamidas/uso terapêutico , Lesões Encefálicas/prevenção & controle , Agonistas de Aminoácidos Excitatórios , Inibidores de Poli(ADP-Ribose) Polimerases , Trifosfato de Adenosina/metabolismo , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Cromatografia Líquida de Alta Pressão , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/lesões , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Ácido Caínico/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Tempo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...