Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 12: 27, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337446

RESUMO

BACKGROUND: Notwithstanding increasing knowledge of titanium dioxide nanoparticles (TiO2 NPs) passing through biological barriers, their biodistribution to the central nervous system (CNS) and potential effects on blood-brain barrier (BBB) physiology remain poorly characterized. METHODS: Here, we report time-related responses from single-dose intravenous (IV) administration of 1 mg/kg TiO2 NPs to rats, with particular emphasis on titanium (Ti) quantification in the brain. Ti content in tissues was analyzed using inductively coupled plasma mass spectrometry. Integrity and functionality of the BBB as well as brain inflammation were characterized using a panel of methods including RT-PCR, immuno-histo chemistry and transporter activity evaluation. RESULTS: Biokinetic analysis revealed Ti biopersistence in liver, lungs and spleen up to one year after TiO2 NPs administration. A significant increase of Ti in the brain was observed at early end points followed by a subsequent decrease. In-depth analysis of Ti in the total brain demonstrated quantitative Ti uptake and clearance by brain microvasculature endothelial cells (BECs) with minimal translocation in the brain parenchyma. The presence of Ti in the BECs did not affect BBB integrity, despite rapid reversible modulation of breast cancer resistance protein activity. Ti biopersistence in organs such as liver was associated with significant increases of tight junction proteins (claudin-5 and occludin), interleukin 1ß (IL-1ß), chemokine ligand 1 (CXCL1) and γ inducible protein-10 (IP-10/CXCL10) in BECs and also increased levels of IL-1ß in brain parenchyma despite lack of evidence of Ti in the brain. These findings mentioned suggest potential effect of Ti present at a distance from the brain possibly via mediators transported by blood. Exposure of an in vitro BBB model to sera from TiO2 NPs-treated animals confirmed the tightness of the BBB and inflammatory responses. CONCLUSION: Overall, these findings suggest the clearance of TiO2 NPs at the BBB with persistent brain inflammation and underscore the role of Ti biopersistence in organs that can exert indirect effects on the CNS dependent on circulating factors.


Assuntos
Barreira Hematoencefálica , Encefalite/induzido quimicamente , Nanopartículas Metálicas , Titânio/farmacocinética , Animais , Injeções Intravenosas , Ratos , Distribuição Tecidual , Titânio/administração & dosagem
2.
Toxicol Sci ; 125(2): 439-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22045033

RESUMO

The number of environmental chemical contaminants suspected to act as endocrine disruptor compounds by interacting with estrogen receptor (ER) signaling pathway has been continuously increasing. To study such interaction, the use of stable reporter gene assays is relevant, but species-specific in vitro screening assays are still lacking to address hazard assessment of estrogenic chemicals in aquatic vertebrates. Here, we describe the development of stable reporter gene assays based on stable expression of subtypes of zebrafish ER (zfERα, zfERß1, and zfERß2) coupled to estrogen response element-driven luciferase in a zebrafish liver (ZFL) cell line. The three established cell models, named ZELH-zfERα, ZELH-zfERß1, and ZELH-zfERß2, expressed stable and significant basal luciferase signal, which was induced by 17ß-estradiol (E2) in a sensitive and dose-response manner at EC(50)s of 0.2, 0.03, and 0.05 nM, respectively. In addition, E2 significantly altered cell proliferation in ZELH-zfERα and ZELH-zfERß2 cells, but not in parental ZFL and ZELH-zfERß1 cells, suggesting a functionality of these two receptors to modulate endogenous gene expression in the transfected clones. The screening of various xenoestrogens from different classes in the three models resulted in different luciferase response patterns. Natural and synthetic estrogens and 1,1,1-trichloro-2-(2 chlorophenyl)-2-(4-chlorophenyl)ethane were active at lower concentrations in ZELH-zfERß1 and ZELH-zfERß2 than in ZELH-zfERα cells, whereas genistein and zearalenone metabolites as well as three benzophenone derivatives preferentially activated zfERα. Altogether, the newly established models provide specific and convenient in vitro tool for comparative assessment of zfERs selective activation by chemicals within ZFL cell context.


Assuntos
Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Estrogênios/toxicidade , Fígado/efeitos dos fármacos , Proteínas de Peixe-Zebra/agonistas , Peixe-Zebra/genética , Alternativas aos Testes com Animais , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estradiol/toxicidade , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ligantes , Fígado/metabolismo , Luciferases/genética , Luciferases/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/genética , Testes de Toxicidade , Transfecção , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...