Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(16): e34674, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224353

RESUMO

Given the increasing utilization of forest components in integration systems worldwide, coupled with the growing demand for food in regions facing water restrictions, this study aims to evaluate how physiological and biochemical parameters contribute to the diversification of adaptive mechanisms among native species and eucalyptus genotypes intercropped with soybean or corn. The native tree species Anadenanthera macrocarpa and Dipteryx alata, and the eucalyptus genotypes Urograndis I-144 and Urocam VM01, were grown in soybean and corn intercropping areas and evaluated in fall, winter, spring, and summer. The study evaluated morning water potential, chloroplast pigment concentration, gas exchange, cell damage, and antioxidant enzyme activity. Intercropped with soybean, development the of A. macrocarpa improved through instantaneous water use efficiency, energy use by the electron transport chain, chloroplast pigments, and catalase enzyme activity. On the other hand, A. macrocarpa when, intercropped with corn, despite increasing energy absorption by the reaction center, there is a need for non-photochemical dissipation and in the activity of the enzymes superoxide dismutase and ascorbate peroxidase in response to water and oxidative deficits. In D. alata, the physiological and biochemical responses were not influenced by intercropping but by seasons, with increased chloroplast pigments in fall and electron transport in summer. However, in corn intercropping, the dissipation of excess energy allowed leaf acclimatization. The I-144 and VM01 genotypes also showed no significant differences between intercrops. The results describe photosynthetic and biochemical challenges in the native species A. macrocarpa intercropped with corn, such as a greater need for enzymatic and non-enzymatic defense mechanisms in response to more negative water potential. In D. alata, the challenges are present in both intercrops due to improved mechanisms to protect the photosynthetic apparatus. The survival of the I-144 genotype may be inefficient in both intercrops under prolonged drought conditions, as it modifies the photosystem; in contrast, genotype VM01 was the most adapted to the system for using captured energy, reducing water loss and being resilient.

2.
Front Plant Sci ; 12: 680545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367206

RESUMO

Brosimum gaudichaudii is a plant species with medicinal relevance due to its furanocoumarin accumulation. The accumulation of these compounds in the root promotes predatory extractivism, which threatens the conservation of the species. In addition, little is known about the conditions for culturing of this species in vitro. The present study aimed to investigate how the application of different spectra of LEDs (white, blue, red, and combinations of blue and red at 1:1 and 3:1 ratios) can impact the morphophysiological and biochemical characteristics of B. gaudichaudii under different in vitro conditions. To evaluate the production of furanocoumarins in its leaves, which are easy-to-collect perennial organs, we cultured nodal segments in 50-mL tubes with MS medium under 100 µmol m-2 s-1 light and a photoperiod of 16 h for 50 days. We then submitted the seedlings biometric, anatomical, biochemical, and physiological evaluations. The different spectral qualities influenced several characteristics of the seedlings. Plants grown under red light showed greater stem elongation and larger and thinner leaves, strategies aimed at capturing a higher ratio of radiant energy. Exposure to the blue/red ratio of 1:1 induced increases in the concentration of the furanocoumarin psoralen, probably due to the diversion of carbon from primary metabolism, which resulted in lower growth. Cultivation under blue light or blue:red light at 3:1 triggered anatomical and physiological changes that led to higher production of secondary metabolites in the leaves, and at the 3:1 ratio, the seedlings also had a high growth rate. These results highlight the fundamental role of light in stimulating the production of secondary metabolites, which has important implications for the production of compounds of interest and indirect consequences for the conservation of B. gaudichaudii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA