Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517259

RESUMO

Background: There is no standard chemotherapy for refractory or relapsing malignant pleural mesothelioma (MPM). Our previous reports nevertheless indicated that a combination of an anthracycline (doxorubicin) and a lysine deacetylase inhibitor (valproic acid, VPA) synergize to induce the apoptosis of MPM cells and reduce tumor growth in mouse models. A Phase I/II clinical trial indicated that this regimen is a promising therapeutic option for a proportion of MPM patients. Methods: The transcriptomes of mesothelioma cells were compared after Illumina HiSeq 4000 sequencing. The expression of differentially expressed genes was inhibited by RNA interference. Apoptosis was determined by cell cycle analysis and Annexin V/7-AAD labeling. Protein expression was assessed by immunoblotting. Preclinical efficacy was evaluated in BALB/c and NOD-SCID mice. Results: To understand the mechanisms involved in chemoresistance, the transcriptomes of two MPM cell lines displaying different responses to VPA-doxorubicin were compared. Among the differentially expressed genes, transforming growth factor alpha (TGFα) was associated with resistance to this regimen. The silencing of TGFα by RNA interference correlated with a significant increase in apoptosis, whereas the overexpression of TGFα desensitized MPM cells to the apoptosis induced by VPA and doxorubicin. The multi-targeted inhibition of histone deacetylase (HDAC), HER2 and TGFα receptor (epidermal growth factor receptor/EGFR) improved treatment efficacy in vitro and reduced tumor growth in two MPM mouse models. Finally, TGFα expression but not EGFR correlated with patient survival. Conclusions: Our data show that TGFα but not its receptor EGFR is a key factor in resistance to MPM chemotherapy. This observation may contribute to casting light on the promising but still controversial role of EGFR signaling in MPM therapy.

2.
Lung Cancer ; 81(3): 311-318, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23790315

RESUMO

Malignant pleural mesothelioma (MPM) is an almost invariably fatal cancer of the pleura due to asbestos exposure. Increasing evidence indicates that unresponsiveness to chemotherapy is due to epigenetic errors leading to inadequate gene expression in tumor cells. The availability of compounds that modulate epigenetic modifications, such as histone acetylation or DNA methylation, offers new prospects for treatment of MPM. Here, we review latest findings on epigenetics in mesothelioma and present novel strategies for promising epigenetic therapies.


Assuntos
Epigênese Genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Pleurais/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Ensaios Clínicos como Assunto , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Epigênese Genética/efeitos dos fármacos , Epigenômica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Mesotelioma Maligno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...