Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e18855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809487

RESUMO

Like other phthalates, diethyl phthalate (DEP) is considered as a contaminant of emerging concern (CEC) due to its ease in migrating from a package to water and food, and hence contaminate consumers, being metabolized and excreted in the urine. Its presence has a negative impact on aquatic ecosystems, especially with respect to disruption of the endocrine system and to reproductive disorders in humans. It mainly enters water bodies via sewage effluents from effluent treatment plants, due to its incomplete or inefficient removal. The objective of this work was to evaluate the toxicity of DEP at different trophic levels and to analyze data on the incidence and concentration of DEP according to its solubility. The concentrations ranged from 12.5 mg L-1 to 500 mg L-1 considering the response for toxicity at each trophic level and to determine the lethal concentration in 50% of the following organisms (LC50) (in mg L-1): Lactuca sativa seeds, Artemia salina Leach nauplii and Zebrafish embryo larval stage (Danio rerio), being 41,057.58 after 120 h; 401.77 after 48 h; and 470 after 96 h of exposure, respectively. As expected, higher organisms were more affected even at low concentrations, which shows the anthropological contribution of CECs to water bodies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35505496

RESUMO

The data on water pollution is scarce in developing countries, including Brazil. The water quality assessment is important implementing the monitoring and remediation programs to minimize the risk of hazardous substances in freshwaters. Thus, this study evaluated the surface water quality of a stretch of the Bois River (Brazil), based on the physicochemical, microbiological and ecotoxicological analyses conducted in 2017, using Standard Methods and fish embryo acute toxicity (FET) test with zebrafish (Danio rerio). The results indicated that the quality of water samples located close to the discharge of tannery effluents was most impaired. Total phosphorus, BOD, DO, ammoniacal nitrogen, and thermotolerant coliforms parameters in P4 were not in accordance with the standards of current Brazilian legislation. Iron, lead, and copper levels were higher than environmental standards. The physicochemical quality of water samples was lower in the dry season than the rainy season. All samples (P1, P3, and P5) in rainy and dry seasons did not induce significant acute toxicity for zebrafish early-life stage; however other trophic levels (algae and microcrustacean) should be investigated to gain a better understanding of the toxicity during water quality analysis. In conclusion, the physicochemical and microbiological changes in the water of the Bois River can affect aquatic organisms as well as humans when it is used for drinking or in agriculture.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água , Peixe-Zebra
3.
J Toxicol Environ Health A ; 85(12): 481-493, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35189772

RESUMO

Resistance to glyphosate herbicide has initiated usage of combined application of herbicides as a weed control measure. Imazethapyr-based herbicides associated with glyphosate herbicide seem to be an alternative to suppress weed resistance. The aim of this study was to examine the adverse effects of Glyphosate Atanor 48® (ATN) and Imazethapyr Plus Nortox® (IMZT) formulations in both single forms and mixtures using HepG2 cells and zebrafish early-life stages models. Data demonstrated cytotoxicity due to exposure to ATN, IMZT for both models, as follows: (1) ATN (0.5 mg/L), IMZT (5 mg/L), and M3 (0.05 mg/L ATN + 5 mg/L IMZT) increased cytotoxicity by disturbing the mitochondrial activity of HepG2 cells 24 hr after exposure; (2) ATN and IMZT (5 mg/L), and M3 (0.05 mg/L ATN + 5 mg/L IMZT) also decreased the integrity of the membrane of HepG2 cells after 24 hr incubation; (3) only ATN and IMZT (5 mg/L) in their single forms diminished the mitochondrial potential of zebrafish; (4) ATN (single form) at 0.5 mg/L induced apoptosis in zebrafish larvae. In conclusion, these herbicides in their single forms appeared to produce greater cytotoxicity to HepG2 cells and zebrafish compared to the herbicide mixtures.


Assuntos
Herbicidas , Ácidos Nicotínicos , Animais , Glicina/análogos & derivados , Herbicidas/toxicidade , Ácidos Nicotínicos/toxicidade , Peixe-Zebra , Glifosato
4.
Artigo em Inglês | MEDLINE | ID: mdl-31255230

RESUMO

Glyphosate (GLY) is the active ingredient of several herbicide formulations widely used to control weeds in agricultural and non-agricultural areas. Due to the intensive use of GLY-based herbicides and their direct application on soils, some of their components, including the active ingredient, may reach the aquatic environment through direct run-off and leaching. The present study assessed the acute toxicity and genotoxicity of the GLY-based formulation Atanor 48 (ATN) and its major constituents GLY, surfactant polyethoxylated tallow amine (POEA), as well as the main metabolite of GLY aminomethylphosphonic acid (AMPA) on non-target aquatic organisms. The toxic effects of these chemicals were evaluated in the fish embryo acute toxicity test with zebrafish (Danio rerio), while genotoxic effects were investigated in the comet assays with cells from zebrafish larvae and rainbow trout gonad-2 (RTG-2). GLY and AMPA caused no acute toxic effect, while ATN and POEA induced significant lethal effects in zebrafish (LC50-96 h 76.50 mg/L and 5.49 mg/L, respectively). All compounds were genotoxic in comet experiments with zebrafish larvae (LOEC 1.7 mg/L for GLY, ATN, AMPA and 0.4 mg/L for POEA). Unlike in vivo, only POEA induced DNA damage in RTG-2 cells (LOEC 1.6 mg/L), suggesting that it is a direct acting genotoxic agent. In summary, these data indicate that the lethal effects on zebrafish early-life stages can be ranked in the following order from most to least toxic: surfactant POEA > formulation ATN > active ingredient GLY ≈ metabolite AMPA. Genotoxic effects were observed in both RTG-2 cells (only POEA) and zebrafish (all test compounds) with the lowest tested concentrations. Therefore, it is important to evaluate different toxicological endpoints as well as use different non-target organisms to predict the hazards of GLY-based formulations and their components and breakdown product to aquatic biota.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Aminas/toxicidade , Animais , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Feminino , Glicina/toxicidade , Larva/efeitos dos fármacos , Masculino , Mutagênicos/toxicidade , Oncorhynchus mykiss , Compostos Organofosforados/toxicidade , Peixe-Zebra , Glifosato
5.
Chem Biol Interact ; 291: 47-54, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29885284

RESUMO

The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box-Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H2O2 [H2O2residual], and the ecotoxicity of the treated samples (lettuce seed, Artemia salina, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H2O2residual] was significantly affected by initial [H2O2] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H2O2] only. A. salina mortality was affected by different process factors in both processes, which suggests the formation of different toxic products in each process. The desirability function was applied to determine the best process parameters and predict the responses, which were confirmed experimentally. Optimal conditions facilitated the complete degradation of the dye without [H2O2residual] or toxicity for samples treated with the Fenton-like process, whereas the Fenton process induced significant mortality for A. salina. Results indicate that the Fenton-like process is superior to the Fenton reaction to degrade Disperse Red 343.


Assuntos
Compostos Azo/isolamento & purificação , Ecotoxicologia , Peróxido de Hidrogênio/química , Ferro/química , Testes de Toxicidade Aguda , Análise de Variância , Animais , Compostos Azo/química , Compostos Azo/toxicidade , Bovinos , Feminino , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/análise , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Masculino , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...