Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 220: 115249, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632884

RESUMO

Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.


Assuntos
Nanoestruturas , Projetos de Pesquisa , Tecnologia
2.
Cells ; 9(5)2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357578

RESUMO

Zinc Oxide Nanoparticles (ZnO NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Several studies have focused on the biosafety of ZnO NPs, since their size and surface area favor entrance and accumulation in the body, which can induce toxic effects. In previous studies, ZnO NPs have been identified as a dose- and time-dependent cytotoxic inducer in testis and male germ cells. However, the consequences for the first cell stage of spermatogenesis, spermatogonia, have never been evaluated. Therefore, the aim of the present work is to evaluate in vitro the cytotoxic effects of ZnO NPs in spermatogonia cells, focusing on changes in cytoskeleton and nucleoskeleton. For that purpose, GC-1 cell line derived from mouse testes was selected as a model of spermatogenesis. These cells were treated with different doses of ZnO NPs for 6 h and 12 h. The impact of GC-1 cells exposure to ZnO NPs on cell viability, cell damage, and cytoskeleton and nucleoskeleton dynamics was assessed. Our results clearly indicate that higher concentrations of ZnO NPs have a cytotoxic effect in GC-1 cells, leading to an increase of intracellular Reactive Oxygen Species (ROS) levels, DNA damage, cytoskeleton and nucleoskeleton dynamics alterations, and consequently cell death. In conclusion, it is here reported for the first time that ZnO NPs induce cytotoxic effects, including changes in cytoskeleton and nucleoskeleton in mouse spermatogonia cells, which may compromise the progression of spermatogenesis in a time- and dose-dependent manner.


Assuntos
Nanopartículas Metálicas/toxicidade , Espermatogônias/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/fisiologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatogônias/metabolismo , Óxido de Zinco/efeitos adversos
3.
Phys Chem Chem Phys ; 22(16): 8572-8584, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32255108

RESUMO

ZnO/ZnO2 composites grown by hydrothermal synthesis at low temperature (180 °C) and thermally annealed at 300 °C were fully analysed by morphological, structural and optical techniques. X-ray diffraction patterns (XRD) and Raman spectroscopy clearly evidence the presence of both crystalline phases in the ZnO/ZnO2 sample. The differential scanning calorimetry analysis and thermogravimetric profiles indicate an exothermic event with a peak temperature ca. 225 °C, which is accompanied by a 8.5% weight loss, being attributed to the crystallization of ZnO from ZnO2. Upon a thermal annealing treatment at 300 °C the ZnO2 phase was completely converted into ZnO, as measured by XRD and Raman spectroscopy. Photoluminescence investigations reveal that the emission is dominated by a broad band recombination in both samples, due to the overlapping of different emitting centres, and that the peak position of the PL emission is dependent on the excitation density. The ZnO/ZnO2 sample exhibits a widening of the bandgap when compared to the one only containing ZnO, likely related to the presence of the additional ZnO2 phase and suggesting a bandgap energy of ~3.42 eV for this compound. Surface analysis revealed that the sample exhibits a surface area of 90 m2 g-1, which decreases to 30 m2 g-1 after the thermal annealing and the full conversion into ZnO. This difference in the surface area showed particular relevance in the stability of the measured optical properties. Particularly, the intensity of the photoluminescence signal was seen to be higher in the ZnO/ZnO2 sample and strongly dependent on the measurement atmosphere, highlighting its potential to be employed in the fabrication of optical-based sensing systems for environmental applications, namely in gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...