Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biotechnol Bioeng ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859573

RESUMO

The increasing prevalence of omics data sources is pushing the study of regulatory mechanisms underlying complex diseases such as cancer. However, the vast quantities of molecular features produced and the inherent interplay between them lead to a level of complexity that hampers both descriptive and predictive tasks, requiring custom-built algorithms that can extract relevant information from these sources of data. We propose a transformation that moves data centered on molecules (e.g., transcripts and proteins) to a new data space focused on putative regulatory modules given by statistically relevant co-expression patterns. To this end, the proposed transformation extracts patterns from the data through biclustering and uses them to create new variables with guarantees of interpretability and discriminative power. The transformation is shown to achieve dimensionality reductions of up to 99% and increase predictive performance of various classifiers across multiple omics layers. Results suggest that omics data transformations from gene-centric to pattern-centric data supports both prediction tasks and human interpretation, notably contributing to precision medicine applications.

2.
Comput Struct Biotechnol J ; 21: 4960-4973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876626

RESUMO

The accurate prediction of phenotypes in microorganisms is a main challenge for systems biology. Genome-scale models (GEMs) are a widely used mathematical formalism for predicting metabolic fluxes using constraint-based modeling methods such as flux balance analysis (FBA). However, they require prior knowledge of the metabolic network of an organism and appropriate objective functions, often hampering the prediction of metabolic fluxes under different conditions. Moreover, the integration of omics data to improve the accuracy of phenotype predictions in different physiological states is still in its infancy. Here, we present a novel approach for predicting fluxes under various conditions. We explore the use of supervised machine learning (ML) models using transcriptomics and/or proteomics data and compare their performance against the standard parsimonious FBA (pFBA) approach using case studies of Escherichia coli organism as an example. Our results show that the proposed omics-based ML approach is promising to predict both internal and external metabolic fluxes with smaller prediction errors in comparison to the pFBA approach. The code, data, and detailed results are available at the project's repository[1].

3.
Front Bioeng Biotechnol ; 11: 1237963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744245

RESUMO

Introduction: Hybrid modeling combining First-Principles with machine learning is becoming a pivotal methodology for Biopharma 4.0 enactment. Chinese Hamster Ovary (CHO) cells, being the workhorse for industrial glycoproteins production, have been the object of several hybrid modeling studies. Most previous studies pursued a shallow hybrid modeling approach based on three-layered Feedforward Neural Networks (FFNNs) combined with macroscopic material balance equations. Only recently, the hybrid modeling field is incorporating deep learning into its framework with significant gains in descriptive and predictive power. Methods: This study compares, for the first time, deep and shallow hybrid modeling in a CHO process development context. Data of 24 fed-batch cultivations of a CHO-K1 cell line expressing a target glycoprotein, comprising 30 measured state variables over time, were used to compare both methodologies. Hybrid models with varying FFNN depths (3-5 layers) were systematically compared using two training methodologies. The classical training is based on the Levenberg-Marquardt algorithm, indirect sensitivity equations and cross-validation. The deep learning is based on the Adaptive Moment Estimation Method (ADAM), stochastic regularization and semidirect sensitivity equations. Results and conclusion: The results point to a systematic generalization improvement of deep hybrid models over shallow hybrid models. Overall, the training and testing errors decreased by 14.0% and 23.6% respectively when applying the deep methodology. The Central Processing Unit (CPU) time for training the deep hybrid model increased by 31.6% mainly due to the higher FFNN complexity. The final deep hybrid model is shown to predict the dynamics of the 30 state variables within the error bounds in every test experiment. Notably, the deep hybrid model could predict the metabolic shifts in key metabolites (e.g., lactate, ammonium, glutamine and glutamate) in the test experiments. We expect deep hybrid modeling to accelerate the deployment of high-fidelity digital twins in the biopharma sector in the near future.

4.
An Acad Bras Cienc ; 95(suppl 1): e20220532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556713

RESUMO

This study evaluated the technological viability of yogurt with the addition of green-banana biomass (Musa spp.) considering the resistant starch (BBV) as a potential prebiotic ingredient and texture agent. Four yogurt formulations were prepared: control; 3% BBV; 5% BBV; and 10% BBV. They were subjected to analysis of resistant starch, lactose, fat, total dry extract, defatted dry extract, moisture, ash, proteins, pH and titratable acidity; syneresis analysis, instrumental texture and instrumental color. All four formulations met the requirements of the identity and quality regulation for fermented milks regarding the physicochemical and microbiological parameters. In the instrumental color analysis, in all treatments with added BBV, darkening was observed after 21 days, with a reduction of a* coordinate and an increase of b* coordinate. In the instrumental texture analysis, the yogurt in the Control treatment had the highest firmness (0.430 N) at 21 days among these treatments. Among the treatments with added BBV, the yogurt with 5% added BBV showed the best results for increasing the viability of lactic bacteria. It was found that yogurt with added BBV is a promising alternative in the elaboration of functional dairy products, adding value to the banana production chain by reducing the green fruit waste.


Assuntos
Musa , Prebióticos , Biomassa , Prebióticos/análise , Amido Resistente/análise , Iogurte/análise
5.
BMC Med Genomics ; 16(Suppl 1): 170, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474945

RESUMO

BACKGROUND: Despite the advancements in multiagent chemotherapy in the past years, up to 10% of Hodgkin's Lymphoma (HL) cases are refractory to treatment and, after remission, patients experience an elevated risk of death from all causes. These complications are dependent on the treatment and therefore an increase in the prognostic accuracy of HL can help improve these outcomes and control treatment-related toxicity. Due to the low incidence of this cancer, there is a lack of works comprehensively assessing the predictability of treatment response, especially by resorting to machine learning (ML) advances and high-throughput technologies. METHODS: We present a methodology for predicting treatment response after two courses of Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD) chemotherapy, through the analysis of gene expression profiles using state-of-the-art ML algorithms. We work with expression levels of tumor samples of Classical Hodgkin's Lymphoma patients, obtained through the NanoString's nCounter platform. The presented approach combines dimensionality reduction procedures and hyperparameter optimization of various elected classifiers to retrieve reference predictability levels of refractory response to ABVD treatment using the regulatory profile of diagnostic tumor samples. In addition, we propose a data transformation procedure to map the original data space into a more discriminative one using biclustering, where features correspond to discriminative putative regulatory modules. RESULTS: Through an ensemble of feature selection procedures, we identify a set of 14 genes highly representative of the result of an fuorodeoxyglucose Positron Emission Tomography (FDG-PET) after two courses of ABVD chemotherapy. The proposed methodology further presents an increased performance against reference levels, with the proposed space transformation yielding improvements in the majority of the tested predictive models (e.g. Decision Trees show an improvement of 20pp in both precision and recall). CONCLUSIONS: Taken together, the results reveal improvements for predicting treatment response in HL disease by resorting to sophisticated statistical and ML principles. This work further consolidates the current hypothesis on the structural difficulty of this prognostic task, showing that there is still a considerable gap to be bridged for these technologies to reach the necessary maturity for clinical practice.


Assuntos
Doença de Hodgkin , Humanos , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/genética , Doença de Hodgkin/complicações , Transcriptoma , Bleomicina/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Vimblastina/uso terapêutico , Vimblastina/efeitos adversos , Dacarbazina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
6.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661327

RESUMO

SUMMARY: Here, we present sbml2hyb, an easy-to-use standalone Python tool that facilitates the conversion of existing mechanistic models of biological systems in Systems Biology Markup Language (SBML) into hybrid semiparametric models that combine mechanistic functions with machine learning (ML). The so-formed hybrid models can be trained and stored back in databases in SBML format. The tool supports a user-friendly export interface with an internal format validator. Two case studies illustrate the use of the sbml2hyb tool. Additionally, we describe HMOD, a new model format designed to support and facilitate hybrid models building. It aggregates the mechanistic model information with the ML information and follows as close as possible the SBML rules. We expect the sbml2hyb tool and HMOD to greatly facilitate the widespread usage of hybrid modeling techniques for biological systems analysis. AVAILABILITY AND IMPLEMENTATION: The Python interface, source code and the example models used for the case studies are accessible at: https://github.com/r-costa/sbml2hyb. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Biologia de Sistemas , Biologia de Sistemas/métodos , Modelos Biológicos , Software , Idioma
7.
PLoS One ; 17(10): e0276253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260602

RESUMO

Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to evaluate patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. Results from four case studies confirm the validity and relevance of the proposed methods, further unveiling critical directions for research on biotechnology and biomedicine. Availability: DISA is freely available at https://github.com/JupitersMight/DISA under the MIT license.


Assuntos
Software , Análise por Conglomerados
8.
Toxins (Basel) ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36287948

RESUMO

Diarrhetic Shellfish Poisoning (DSP) is an acute intoxication caused by the consumption of contaminated shellfish, which is common in many regions of the world. To safeguard human health, most countries implement programs focused on the surveillance of toxic phytoplankton abundance and shellfish toxicity levels, an effort that can be complemented by a deeper understanding of the underlying phenomena. In this work, we identify patterns of seasonality in shellfish toxicity across the Portuguese coast and analyse time-lagged correlations between this toxicity and various potential risk factors. We extend the understanding of these relations through the introduction of temporal lags, allowing the analysis of time series at different points in time and the study of the predictive power of the tested variables. This study confirms previous findings about toxicity seasonality patterns on the Portuguese coast and provides further quantitative data about the relations between shellfish toxicity and geographical location, shellfish species, toxic phytoplankton abundances, and environmental conditions. Furthermore, multiple pairs of areas and shellfish species are identified as having correlations high enough to allow for a predictive analysis. These results represent the first step towards understanding the dynamics of DSP toxicity in Portuguese shellfish producing areas, such as temporal and spatial variability, and towards the development of a shellfish safety forecasting system.


Assuntos
Intoxicação por Frutos do Mar , Humanos , Toxinas Marinhas/toxicidade , Toxinas Marinhas/análise , Frutos do Mar/análise , Fitoplâncton
9.
Comput Biol Med ; 146: 105443, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533463

RESUMO

STATEMENT: Enrichment analysis of cell transcriptional responses to SARS-CoV-2 infection from biclustering solutions yields broader coverage and superior enrichment of GO terms and KEGG pathways against alternative state-of-the-art machine learning solutions, thus aiding knowledge extraction. MOTIVATION AND METHODS: The comprehensive understanding of the impacts of SARS-CoV-2 virus on infected cells is still incomplete. This work aims at comparing the role of state-of-the-art machine learning approaches in the study of cell regulatory processes affected and induced by the SARS-CoV-2 virus using transcriptomic data from both infectable cell lines available in public databases and in vivo samples. In particular, we assess the relevance of clustering, biclustering and predictive modeling methods for functional enrichment. Statistical principles to handle scarcity of observations, high data dimensionality, and complex gene interactions are further discussed. In particular, and without loos of generalization ability, the proposed methods are applied to study the differential regulatory response of lung cell lines to SARS-CoV-2 (α-variant) against RSV, IAV (H1N1), and HPIV3 viruses. RESULTS: Gathered results show that, although clustering and predictive algorithms aid classic stances to functional enrichment analysis, more recent pattern-based biclustering algorithms significantly improve the number and quality of enriched GO terms and KEGG pathways with controlled false positive risks. Additionally, a comparative analysis of these results is performed to identify potential pathophysiological characteristics of COVID-19. These are further compared to those identified by other authors for the same virus as well as related ones such as SARS-CoV-1. The findings are particularly relevant given the lack of other works utilizing more complex machine learning algorithms within this context.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Análise por Conglomerados , Humanos , Aprendizado de Máquina , SARS-CoV-2
10.
Comput Methods Programs Biomed ; 219: 106754, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35364482

RESUMO

BACKGROUND: The performance of traditional risk score systems to predict (post)-operative outcomes is limited. This weakness reduces confidence in its use to support clinical risk mitigation decisions. However, the rapid growth of health data in the last years offers principles to deal with some of these limitations. In this regard, the data allows the extraction of relevant information for both patients stratification and the rigorous identification of associated risk factors. The patients can then be targeted to specific preoperative optimization programs, thus contributing to the reduction of associated morbidity and mortality. OBJECTIVES: The main goal of this work is, therefore, to provide a clinical decision support system (CDSS) based on data-driven modeling methods for surgical risk prediction specific for cancer patients in Portugal. RESULTS: The result is IPOscore, a single web-based platform aimed at being an innovative approach to assist clinical decision-making in the surgical oncology domain. This system includes a database to store/manage the clinical data collected in a structured format, data visualization and analysis tools, and predictive machine learning models to predict postoperative outcomes in cancer patients. IPOscore also includes a pattern mining module based on biclustering to assess the discriminative power of a pattern towards postsurgical outcomes. Additionally, a mobile application is provided to this end. CONCLUSIONS: The IPOscore platform is a valuable tool for surgical oncologists not only for clinical data management but also as a preventative and predictive healthcare system. Currently, this clinical support tool is being tested at the Portuguese Institute of Oncology (IPO-Porto), and can be accessed online at https://iposcore.org.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Neoplasias , Humanos , Internet , Aprendizado de Máquina , Complicações Pós-Operatórias
11.
BMC Bioinformatics ; 22(1): 426, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496758

RESUMO

BACKGROUND: A considerable number of data mining approaches for biomedical data analysis, including state-of-the-art associative models, require a form of data discretization. Although diverse discretization approaches have been proposed, they generally work under a strict set of statistical assumptions which are arguably insufficient to handle the diversity and heterogeneity of clinical and molecular variables within a given dataset. In addition, although an increasing number of symbolic approaches in bioinformatics are able to assign multiple items to values occurring near discretization boundaries for superior robustness, there are no reference principles on how to perform multi-item discretizations. RESULTS: In this study, an unsupervised discretization method, DI2, for variables with arbitrarily skewed distributions is proposed. Statistical tests applied to assess differences in performance confirm that DI2 generally outperforms well-established discretizations methods with statistical significance. Within classification tasks, DI2 displays either competitive or superior levels of predictive accuracy, particularly delineate for classifiers able to accommodate border values. CONCLUSIONS: This work proposes a new unsupervised method for data discretization, DI2, that takes into account the underlying data regularities, the presence of outlier values disrupting expected regularities, as well as the relevance of border values. DI2 is available at https://github.com/JupitersMight/DI2.


Assuntos
Algoritmos , Mineração de Dados , Biologia Computacional
12.
Cancers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203189

RESUMO

Postoperative complications can impose a significant burden, increasing morbidity, mortality, and the in-hospital length of stay. Today, the number of studies available on the prognostication of postsurgical complications in cancer patients is growing and has already created a considerable set of dispersed contributions. This work provides a comprehensive survey on postoperative risk analysis, integrating principles from classic risk scores and machine-learning approaches within a coherent frame. A qualitative comparison is offered, taking into consideration the available cohort data and the targeted postsurgical outcomes of morbidity (such as the occurrence, nature or severity of postsurgical complications and hospitalization needs) and mortality. This work further establishes a taxonomy to assess the adequacy of cohort studies and guide the development and assessment of new learning approaches for the study and prediction of postoperative complications.

13.
BMC Med Inform Decis Mak ; 21(1): 200, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182974

RESUMO

Postoperative complications are still hard to predict despite the efforts towards the creation of clinical risk scores. The published scores contribute for the creation of specialized tools, but with limited predictive performance and reusability for implementation in the oncological context. This work aims to predict postoperative complications risk for cancer patients, offering two major contributions. First, to develop and evaluate a machine learning-based risk score, specific for the Portuguese population using a retrospective cohort of 847 cancer patients undergoing surgery between 2016 and 2018, for 4 outcomes of interest: (1) existence of postoperative complications, (2) severity level of complications, (3) number of days in the Intermediate Care Unit (ICU), and (4) postoperative mortality within 1 year. An additional cohort of 137 cancer patients from the same center was used for validation. Second, to improve the interpretability of the predictive models. In order to achieve these objectives, we propose an approach for the learning of risk predictors, offering new perspectives and insights into the clinical decision process. For postoperative complications the Receiver Operating Characteristic Curve (AUC) was 0.69, for complications' severity AUC was 0.65, for the days in the ICU the mean absolute error was 1.07 days, and for 1-year postoperative mortality the AUC was 0.74, calculated on the development cohort. In this study, predictive models which could help to guide physicians at organizational and clinical decision making were developed. Additionally, a web-based decision support tool is further provided to this end.


Assuntos
Neoplasias , Complicações Pós-Operatórias , Estudos de Coortes , Humanos , Neoplasias/cirurgia , Portugal/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Curva ROC , Estudos Retrospectivos
14.
J Med Internet Res ; 23(4): e26075, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33835931

RESUMO

BACKGROUND: In the face of the current COVID-19 pandemic, the timely prediction of upcoming medical needs for infected individuals enables better and quicker care provision when necessary and management decisions within health care systems. OBJECTIVE: This work aims to predict the medical needs (hospitalizations, intensive care unit admissions, and respiratory assistance) and survivability of individuals testing positive for SARS-CoV-2 infection in Portugal. METHODS: A retrospective cohort of 38,545 infected individuals during 2020 was used. Predictions of medical needs were performed using state-of-the-art machine learning approaches at various stages of a patient's cycle, namely, at testing (prehospitalization), at posthospitalization, and during postintensive care. A thorough optimization of state-of-the-art predictors was undertaken to assess the ability to anticipate medical needs and infection outcomes using demographic and comorbidity variables, as well as dates associated with symptom onset, testing, and hospitalization. RESULTS: For the target cohort, 75% of hospitalization needs could be identified at the time of testing for SARS-CoV-2 infection. Over 60% of respiratory needs could be identified at the time of hospitalization. Both predictions had >50% precision. CONCLUSIONS: The conducted study pinpoints the relevance of the proposed predictive models as good candidates to support medical decisions in the Portuguese population, including both monitoring and in-hospital care decisions. A clinical decision support system is further provided to this end.


Assuntos
COVID-19/terapia , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Respiração Artificial/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias , Portugal/epidemiologia , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação , Adulto Jovem
15.
IEEE J Biomed Health Inform ; 25(7): 2421-2434, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33687853

RESUMO

Understanding the individualized risks of undertaking surgical procedures is essential to personalize preparatory, intervention and post-care protocols for minimizing post-surgical complications. This knowledge is key in oncology given the nature of interventions, the fragile profile of patients with comorbidities and cytotoxic drug exposure, and the possible cancer recurrence. Despite its relevance, the discovery of discriminative patterns of post-surgical risk is hampered by major challenges: i) the unique physiological and demographic profile of individuals, as well as their differentiated post-surgical care; ii) the high-dimensionality and heterogeneous nature of available biomedical data, combining non-identically distributed risk factors, clinical and molecular variables; iii) the need to generalize tumors have significant histopathological differences and individuals undertake unique surgical procedures; iv) the need to focus on non-trivial patterns of post-surgical risk, while guaranteeing their statistical significance and discriminative power; and v) the lack of interpretability and actionability of current approaches. Biclustering, the discovery of groups of individuals correlated on subsets of variables, has unique properties of interest, being positioned to satisfy the aforementioned challenges. In this context, this work proposes a structured view on why, when and how to apply biclustering to mine discriminative patterns of post-surgical risk with guarantees of usability, a subject remaining unexplored up to date. These patterns offer a comprehensive view on how the patient profile, cancer histopathology and entailed surgical procedures determine: i) post-surgical complications, ii) survival, and iii) hospitalization needs. The gathered results confirm the role of biclustering in comprehensively finding interpretable, actionable and statistically significant patterns of post-surgical risk. The found patterns are already assisting healthcare professionals at IPO-Porto to establish specialized pre-habilitation protocols and bedside care.


Assuntos
Neoplasias , Pessoal de Saúde , Humanos , Neoplasias/cirurgia , Resultado do Tratamento
16.
Database (Oxford) ; 20202020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247931

RESUMO

The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community. Database URL:  www.kimosys.org.


Assuntos
Redes e Vias Metabólicas , Biologia de Sistemas , Simulação por Computador , Bases de Dados Factuais , Internet , Cinética , Interface Usuário-Computador
17.
Perioper Med (Lond) ; 9: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774846

RESUMO

BACKGROUND: Gastrointestinal cancer surgery continues to be a significant cause of postoperative complications and mortality in high-risk patients. It is crucial to identify these patients. Our study aimed to evaluate the accuracy of specific perioperative risk assessment tools to predict postoperative complications, identifying the most informative variables and combining them to test their prediction ability as a new score. METHODS: A prospective cohort study of digestive cancer surgical patients admitted to the surgical intermediate care unit of the Portuguese Oncology Institute of Porto, Portugal was conducted during the period January 2016 to April 2018. Demographic and medical information including sex, age, date from hospital admission, diagnosis, emergency or elective admission, and type of surgery, were collected. We analyzed and compared a set of measurements of surgical risk using the risk assessment instruments P-POSSUM Scoring, ACS NSQIP Surgical Risk Calculator, and ARISCAT Risk Score according to the outcomes classified by the Clavien-Dindo score. According to each risk score system, we studied the expected and observed post-operative complications. We performed a multivariable regression model retaining only the significant variables of these tools (age, gender, physiological P-Possum, and ACS NSQIP serious complication rate) and created a new score (MyIPOrisk-score). The predictive ability of each continuous score and the final panel obtained was evaluated using ROC curves and estimating the area under the curve (AUC). RESULTS: We studied 341 patients. Our results showed that the predictive accuracy and agreement of P-POSSUM Scoring, ACS NSQIP Surgical Risk Calculator, and ARISCAT Risk Score were limited. The MyIPOrisk-score, shows to have greater discrimination ability than the one obtained with the other risk tools when evaluated individually (AUC = 0.808; 95% CI: 0.755-0.862). The expected and observed complication rates were similar to the new risk tool as opposed to the other risk calculators. CONCLUSIONS: The feasibility and usefulness of the MyIPOrisk-score have been demonstrated for the evaluation of patients undergoing digestive oncologic surgery. However, it requires further testing through a multicenter prospective study to validate the predictive accuracy of the proposed risk score.

18.
Int J Biol Macromol ; 163: 240-250, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622773

RESUMO

Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.


Assuntos
Coenzimas/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas/metabolismo , Metabolismo dos Carboidratos , Ativação Enzimática , Genoma Bacteriano , Redes e Vias Metabólicas , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S/genética , Especificidade por Substrato , Virulência
19.
Patient Saf Surg ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827617

RESUMO

BACKGROUND: Postoperative pulmonary complications (PPCs) contribute significantly to overall postoperative morbidity and mortality. In abdominal surgery, PPCs remain frequent. The study aimed to analyze the profile and outcomes of PPCs in patients submitted to abdominal surgery and admitted in a Portuguese polyvalent intensive care unit. METHODS: From January to December 2017 in the polyvalent intensive care unit of Hospital Garcia de Orta, Almada, Portugal, we conducted a retrospective, observational study of inpatients submitted to urgent or elective abdominal surgery who had severe PPCs. We evaluated the perioperative risk factors and associated mortality. Logistic regression was performed to find which perioperative risk factors were most important in the occurrence of PPCs. RESULTS: Sixty patients (75% male) with a median age of 64.5 [47-81] years who were submitted to urgent or elective abdominal surgery were included in the analysis. Thirty-six patients (60%) developed PPCs within 48 h and twenty-four developed PPCs after 48 h. Pneumonia was the most frequent PPC in this sample. In this cohort, 48 patients developed acute respiratory failure and needed mechanical ventilation. In the emergency setting, peritonitis had the highest rate of PPCs. Electively operated patients who developed PPCs were mostly carriers of digestive malignancies. Thirty-day mortality was 21.7%. The risk of PPCs development in the first 48 h was related to the need for neuromuscular blocking drugs several times during surgery and preoperative abnormal arterial blood gases. Median abdominal surgical incision, long surgery duration, and high body mass index were associated with PPCs that occurred more than 48 h after surgery. The American Society of Anesthesiologists physical status score 4 and COPD/Asthma determined less mechanical ventilation needs since they were preoperatively optimized. Malnutrition (low albumin) before surgery was associated with 30-day mortality. CONCLUSION: PPCs after abdominal surgery are still a major problem since they have profound effects on outcomes. Our results suggest that programs before surgery, involve preoperative lifestyle changes, such as nutritional supplementation, exercise, stress reduction, and smoking cessation, were an effective strategy in mitigating postoperative complications by decreasing mortality.

20.
Biotechnol Prog ; 34(6): 1344-1354, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30294889

RESUMO

Over the last years, several genome-scale metabolic models (GEMs) and kinetic models of Escherichia coli were published. Their predictive performance varies according to the evaluation metric considered, the computational simulation methods used, and the type/quality of experimental data available. However, the GEM approach is often not compared with the kinetic modeling framework. Also, the different genome-scale reconstruction versions and simulation methods of mutant phenotypes are usually not validated to predict intracellular fluxes using large experimental datasets. Here, we intended to (i) systematically evaluate the prediction performance of three E. coli GEMs (iJR904, iAF1260, and iJO1366) available in the literature according to predictive growth metrics (intracellular flux distribution); (ii) assess the reliability of a E. coli GEM in the prediction of gene knockout phenotypes when different simulation methods (parsimonious flux balance analysis, Minimization of Metabolic Adjustment, linear version of MoMA, Regulatory on/off minimization, and Minimization of Metabolites Balance) are used; and finally (iii) investigate the flux distribution predictive power of the constrained-based modeling approach (selected stoichiometric GEM) and compare it with the kinetic modeling approach (two published kinetic models) for E. coli central metabolism, in order to assess their accuracy. Results show that the phenotype predictions were not significantly sensitive to the metabolic models, although the GEM iAF1260 was more accurate in the prediction of central carbon fluxes at low dilution rates. Furthermore, we observed that the choice of the appropriate simulation method of mutant phenotypes depends on the biological question to be addressed. In terms of the two modeling approaches, none outperformed the other for all the tested scenarios. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1344-1354, 2018.


Assuntos
Escherichia coli/genética , Cinética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...