Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem Pharmacol ; 68(4): 631-9, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15276070

RESUMO

Chronic blockade of nitric oxide (NO) synthesis attenuates the eosinophil infiltration into airways of allergic rats. This study was designed to investigate whether the inhibition of eosinophil influx to the lung of allergic rats reflects modifications in the pattern of cell mobilization from the bone marrow to peripheral blood and/or to lung. Male Wistar rats were treated with N(omega)-nitro-l-arginine methyl ester (l-NAME; 20mg/rat per day) for 4 weeks and sensitized with ovalbumin (OVA). In control rats, the pulmonary OVA-challenge promoted an early (24h) increase in the bone marrow eosinophil population that normalized at 48 h after OVA-challenge, at which time the eosinophils disappeared from the blood and reached the lungs in mass. In l-NAME-treated rats, an accumulation of eosinophils in bone marrow was observed at 24 and 48 h post-OVA-challenge. No variation in this cell type number was observed in peripheral blood and bronchoalveolar lavage throughout the time-course studied. In control rats, the adhesion of bone marrow eosinophils to fibronectin-covered wells was significantly increased at 24h after OVA-challenge, whereas in l-NAME-treated rats the increased adhesion was detected at 48 h. A 32% decrease in the expression of inducible nitric oxide synthase (iNOS) (but not endothelial nitric oxide synthase; eNOS) in eosinophils from l-NAME-treated rats was observed. The levels of IgE, IgG(1) and IgG(2a) were not affected by the l-NAME treatment. Our findings suggest that inhibition of NO synthesis upregulates the binding of eosinophils to extracellular matrix proteins such as fibronectin, producing a delayed efflux of eosinophils from bone marrow to peripheral blood and lungs.


Assuntos
Medula Óssea/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Hipersensibilidade/patologia , NG-Nitroarginina Metil Éster/farmacologia , Animais , Medula Óssea/fisiologia , Lavagem Broncoalveolar , Inibidores Enzimáticos/farmacologia , Eosinófilos/fisiologia , Fibronectinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipersensibilidade/metabolismo , Imunoglobulinas/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Doadores de Óxido Nítrico , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Wistar
2.
Biochemical Pharmacology ; 68(4): 631-639, 2004.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060813

RESUMO

Chronic blockade of nitric oxide (NO) synthesis attenuates the eosinophil infiltration into airways of allergic rats. This study was designed to investigate whether the inhibition of eosinophil influx to the lung of allergic rats reflects modifications in the pattern of cell mobilization from the bone marrow to peripheral blood and/or to lung. Male Wistar rats were treated with Nù-nitro-L-arginine methyl ester (L-NAME; 20 mg/rat per day) for 4 weeks and sensitized with ovalbumin (OVA). In control rats, the pulmonary OVA-challenge promoted an early (24 h) increase in the bone marrow eosinophil population that normalized at 48 h after OVA-challenge, at which time the eosinophils disappeared from the blood and reached the lungs in mass. In L-NAME-treated rats, an accumulation of eosinophils in bone marrow was observed at 24 and 48 h post-OVA-challenge. No variation in this cell type number was observed in peripheral blood and bronchoalveolar lavage throughout the time-course studied. In control rats, the adhesion of bone marrow eosinophils to fibronectin-covered wells was significantly increased at 24 h after OVA-challenge, whereas in L-NAME-treated rats the increased adhesion was detected at 48 h. A 32% decrease in the expression of inducible nitric oxide synthase (iNOS) (but not endothelial nitric oxide synthase; eNOS) in eosinophils from L-NAME-treated rats was observed. The levels of IgE, IgG1 and IgG2a were not affected by the L-NAME treatment. Our findings suggest that inhibition of NO synthesis upregulates the binding of eosinophils to extracellular matrix proteins such as fibronectin, producing a delayed efflux of eosinophils from bone marrow to peripheral blood and lungs.


Assuntos
Animais , Ratos , Eosinófilos/imunologia , Óxido Nítrico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...