Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 162: 105281, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161136

RESUMO

Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75NTR). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases. Multiple strategies targeting this neurotrophin have been tested; most have found obstacles that ultimately hampered their effectiveness. This review focuses on the involvement of BDNF and its receptors in the pathophysiology of Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Rett Syndrome (RTT). We describe the known mechanisms leading to the impairment of BDNF/TrkB signalling in these disorders. Such mechanistic insight highlights how BDNF signalling compromise can take various shapes, nearly disease-specific. Therefore, BDNF-based therapeutic strategies must be specifically tailored and are more likely to succeed if a combination of resources is employed.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doenças do Sistema Nervoso/terapia , Doenças Raras/terapia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças Raras/metabolismo , Transdução de Sinais
2.
Front Pharmacol ; 11: 985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733240

RESUMO

Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer's disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid ß peptide (Aß). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aß administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aß-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aß-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aß oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aß caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aß-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...