Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 416: 108429, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35081508

RESUMO

The mouse utricle model system is the best-characterized ex vivo preparation for studies of mature mammalian hair cells (HCs). Despite the many advantages of this model system, efficient and reliable quantification of HCs from cultured utricles has been a persistent challenge with this model system. Utricular HCs are commonly quantified by counting immunolabeled HCs in regions of interest (ROIs) placed over an image of the utricle. Our data indicate that the accuracy of HC counts obtained using this method can be impacted by variability in HC density across different regions of the utricle. In addition, the commonly used HC marker myosin 7a results in a diffuse cytoplasmic stain that is not conducive to automated quantification and must be quantified manually, a labor-intensive task. Furthermore, myosin 7a immunoreactivity is retained in dead HCs, resulting in inaccurate quantification of live HCs using this marker. Here we have developed a method for semi-automated quantification of surviving HCs that combines immunoreactivity for the HC-specific transcription factor Pou4f3 with labeling of activated caspase 3/7 (AC3/7) to detect apoptotic HCs. The discrete nuclear Pou4f3 signal allowed us to utilize the binary or threshold function within ImageJ to automate HC quantification. To further streamline this process, we created an ImageJ macro that automates the process from raw image loading to a final quantified image that can be immediately evaluated for accuracy. Within this quantified image, the user can manually correct the quantification via an image overlay indicating the counted HC nuclei. Pou4f3-positive HCs that also express AC3/7 are subtracted to yield accurate counts of surviving HCs. Overall, we present a semi-automated method that is faster than manual HC quantification and identifies surviving HCs with high accuracy.


Assuntos
Células Ciliadas Auditivas , Sáculo e Utrículo , Animais , Regulação da Expressão Gênica , Cabelo , Camundongos , Fatores de Transcrição
2.
J Biol Chem ; 297(6): 101393, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762908

RESUMO

ER-to-Golgi transport is the first step in the constitutive secretory pathway, which, unlike regulated secretion, is believed to proceed nonstop independent of Ca2+ flux. However, here we demonstrate that penta-EF hand (PEF) proteins ALG-2 and peflin constitute a hetero-bifunctional COPII regulator that responds to Ca2+ signaling by adopting one of several distinct activity states. Functionally, these states can adjust the rate of ER export of COPII-sorted cargos up or down by ∼50%. We found that at steady-state Ca2+, ALG-2/peflin hetero-complexes bind to ER exit sites (ERES) through the ALG-2 subunit to confer a low, buffered secretion rate, while peflin-lacking ALG-2 complexes markedly stimulate secretion. Upon Ca2+ signaling, ALG-2 complexes lacking peflin can either increase or decrease the secretion rate depending on signaling intensity and duration-phenomena that could contribute to cellular growth and intercellular communication following secretory increases or protection from excitotoxicity and infection following decreases. In epithelial normal rat kidney (NRK) cells, the Ca2+-mobilizing agonist ATP causes ALG-2 to depress ER export, while in neuroendocrine PC12 cells, Ca2+ mobilization by ATP results in ALG-2-dependent enhancement of secretion. Furthermore, distinct Ca2+ signaling patterns in NRK cells produce opposing ALG-2-dependent effects on secretion. Mechanistically, ALG-2-dependent depression of secretion involves decreased levels of the COPII outer shell and increased peflin targeting to ERES, while ALG-2-dependent enhancement of secretion involves increased COPII outer shell and decreased peflin at ERES. These data provide insights into how PEF protein dynamics affect secretion of important physiological cargoes such as collagen I and significantly impact ER stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Proteínas de Ligação ao Cálcio/genética , Retículo Endoplasmático/genética , Camundongos , Células PC12 , Transporte Proteico , Ratos
3.
J Clin Invest ; 130(5): 2657-2672, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027617

RESUMO

Hair cells, the mechanosensory receptors of the inner ear, are responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular heat shock 70-kDa protein (HSP70). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, whereas inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair cell-specific expression of the known HSP70 receptor TLR4 was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate nonautonomous hair cell survival. Exosomes may hold potential as nanocarriers for delivery of therapeutics against hearing loss.


Assuntos
Exossomos/metabolismo , Células Ciliadas Auditivas/metabolismo , Animais , Antibacterianos/toxicidade , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Resposta ao Choque Térmico/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Modelos Biológicos , Neomicina/toxicidade , Ototoxicidade/genética , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Gravidez , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...