Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Anat Embryol Cell Biol ; 236: 21-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955770

RESUMO

The ability to assess various cellular events consequent to perturbations, such as genetic mutations, disease states and therapies, has been recently revolutionized by technological advances in multiple "omics" fields. The resulting deluge of information has enabled and necessitated the development of tools required to both process and interpret the data. While of tremendous value to basic researchers, the amount and complexity of the data has made it extremely difficult to manually draw inference and identify factors key to the study objectives. The challenges of data reduction and interpretation are being met by the development of increasingly complex tools that integrate disparate knowledge bases and synthesize coherent models based on current biological understanding. This chapter presents an example of how genomics data can be integrated with biological network analyses to gain further insight into the developmental consequences of genetic perturbations. State of the art methods for conducting similar studies are discussed along with modern methods used to analyze and interpret the data.


Assuntos
Biologia Computacional , Biologia de Sistemas , Genômica , Músculo Esquelético , Bases de Conhecimento
2.
Methods Mol Biol ; 2549: 345-357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218529

RESUMO

Automated high-throughput immunoassays are emerging as reliable analytic techniques for the quantitative detection of proteins from a variety of sample types. Herein, we describe a method using the Protein Simple Wes capillary-based automated immunoassays platform for the quantification of His- and HA-tagged antibody transcytosis across an in vitro transwell blood-brain barrier (BBB) model. Compared to conventional ELISA, fluorescence, and Mass Spec-based detection approaches, Wes provides comparable datasets with additional information regarding size, aggregation, and potential degradation of samples before and after BBB transcytosis. In this chapter, we have benchmarked our Wes technique against ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), using known BBB crossing (FC5) and non-crossing (A20.1) single domain antibodies.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Anticorpos/química , Barreira Hematoencefálica/metabolismo , Cromatografia Líquida , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Espectrometria de Massas em Tandem , Transcitose
3.
Stem Cell Rev Rep ; 18(1): 259-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687385

RESUMO

Human induced pluripotent stem cell (iPSC)-derived neurons are of interest for studying neurological disease mechanisms, developing potential therapies and deepening our understanding of the human nervous system. However, compared to an extensive history of practice with primary rodent neuron cultures, human iPSC-neurons still require more robust characterization of expression of neuronal receptors and ion channels and functional and predictive pharmacological responses. In this study, we differentiated human amniotic fluid-derived iPSCs into a mixed population of neurons (AF-iNs). Functional assessments were performed by evaluating electrophysiological (patch-clamp) properties and the effect of a panel of neuropharmacological agents on spontaneous activity (multi-electrode arrays; MEAs). These electrophysiological data were benchmarked relative to commercially sourced human iPSC-derived neurons (CNS.4U from Ncardia), primary human neurons (ScienCell™) and primary rodent cortical/hippocampal neurons. Patch-clamp whole-cell recordings showed that mature AF-iNs generated repetitive firing of action potentials in response to depolarizations, similar to that of primary rodent cortical/hippocampal neurons, with nearly half of the neurons displaying spontaneous post-synaptic currents. Immunochemical and MEA-based analyses indicated that AF-iNs were composed of functional glutamatergic excitatory and inhibitory GABAergic neurons. Principal component analysis of MEA data indicated that human AF-iN and rat neurons exhibited distinct pharmacological and electrophysiological properties. Collectively, this study establishes a necessary prerequisite for AF-iNs as a human neuron culture model suitable for pharmacological studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Benchmarking , Fenômenos Eletrofisiológicos , Humanos , Neurônios , Ratos , Roedores
4.
Histol Histopathol ; 34(5): 457-467, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30698269

RESUMO

The esophagus is a muscular tube which transports swallowed content from the oral cavity and the pharynx to the stomach. Early in mouse development, an entire layer of the esophagus, the muscularis externa, consists of differentiated smooth muscle cells. Starting shortly after mid-gestation till about two weeks after birth, the muscularis externa almost entirely consists of striated muscle. This proximal-to-distal replacement of smooth muscle by the striated muscle depends on a number of factors. To identify the nature of the hypothetical "proximal" (mainly striated muscle originating) and "distal" (mainly smooth muscle originating) signals that govern the striated-for-smooth muscle replacement, we compared the esophagus of Myf5:MyoD null fetuses completely lacking striated muscle to the normal control using cDNA microarray analysis, followed by a comprehensive database search. Here we provide an insight into the nature of "proximal" and "distal" signals that govern the striated-for-smooth muscle replacement in the esophagus.


Assuntos
Esôfago/embriologia , Desenvolvimento Muscular , Músculo Liso/embriologia , Músculo Estriado/embriologia , Animais , Camundongos
5.
Eur J Pharmacol ; 823: 96-104, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408093

RESUMO

Synthetic cannabinoids are marketed as legal alternatives to Δ9-THC, and are a growing worldwide concern as these drugs are associated with severe adverse effects. Unfortunately, insufficient information regarding the physiological and pharmacological effects of emerging synthetic cannabinoids (ESCs) makes their regulation by government authorities difficult. One strategy used to evade regulation is to distribute isomers of regulated synthetic cannabinoids. This study characterized the pharmacological properties of a panel of ESCs in comparison to Δ9-THC, as well as six JWH-122 isomers relative to its parent compound (JWH-122-4). Two cell-based assays were used to determine the potency and efficacy of ESCs and a panel of reference cannabinoids. HEK293T cells were transfected with human cannabinoid receptor 1 (CB1) and pGloSensor-22F, and the inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live cells. All ESCs examined were classified as agonists, with the following rank order of potency: Win 55,212-2 > CP 55,940 > JWH-122-4 > Δ9-THC ≈ RCS-4 ≈ THJ-2201 > JWH-122-5 > JWH-122-7 > JWH-122-2 ≈ AB-CHMINACA > JWH-122-8 > JWH-122-6 > JWH-122-3. Evaluation of ESC-stimulated Ca2+ transients in cultured rat primary hippocampal neurons confirmed the efficacy of four of the most potent ESCs (JWH-122-4, JWH-122-5, JWH-122-7 and AB-CHMINACA). This work helps regulatory agencies make informed decisions concerning these poorly characterized recreational drugs.


Assuntos
Canabinoides/farmacologia , Hipocampo/citologia , Indazóis/farmacologia , Indóis/química , Naftalenos/química , Neurônios/efeitos dos fármacos , Valina/análogos & derivados , Canabinoides/química , Células HEK293 , Humanos , Indazóis/química , Isomerismo , Naftalenos/farmacologia , Valina/química , Valina/farmacologia
6.
Histol Histopathol ; 32(10): 987-1000, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28271491

RESUMO

The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.


Assuntos
Orelha/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Animais , Orelha/embriologia , Orelha Interna/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas Internas/fisiologia , Humanos , Camundongos , Análise em Microsséries , Organogênese
7.
Eur J Pharmacol ; 786: 234-245, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27260125

RESUMO

There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs.


Assuntos
Canabinoides/síntese química , Canabinoides/farmacologia , Hipocampo/citologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Gravidez , Ratos , Ratos Sprague-Dawley
8.
Eur J Pharmacol ; 786: 148-160, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27262380

RESUMO

Activation of cannabinoid receptor 1 (CB1) inhibits synaptic transmission in hippocampal neurons. The goal of this study was to evaluate the ability of benchmark and emerging synthetic cannabinoids to suppress neuronal activity in vitro using two complementary techniques, Ca(2+) spiking and multi-electrode arrays (MEAs). Neuron culture and fluorescence imaging conditions were extensively optimized to provide maximum sensitivity for detection of suppression of neural activity by cannabinoids. The neuronal Ca(2+) spiking frequency was significantly suppressed within 10min by the prototypic aminoalkylindole cannabinoid, WIN 55,212-2 (10µM). Suppression by WIN 55,212-2 was not improved by pharmacological intervention with signaling pathways known to interfere with CB1 signaling. The naphthoylindole CB1 agonist, JWH-018 suppressed Ca(2+) spiking at a lower concentration (2.5µM), and the CB1 antagonist rimonabant (5µM), reversed this suppression. In the MEA assay, the ability of synthetic CB1 agonists to suppress spontaneous electrical activity of hippocampal neurons was evaluated over 80min sessions. All benchmark (WIN 55,212-2, HU-210, CP 55,940 and JWH-018) and emerging synthetic cannabinoids (XLR-11, JWH-250, 5F-PB-22, AB-PINACA and MAM-2201) suppressed neural activity at a concentration of 10µM; furthermore, several of these compounds also significantly suppressed activity at 1µM concentrations. Rimonabant partially reversed spiking suppression of 5F-PB-22 and, to a lesser extent, of MAM-2201, supporting CB1-mediated involvement, although the inactive WIN 55,212-3 also partially suppressed activity. Taken together, synthetic cannabinoid CB1-mediated suppression of neuronal activity was detected using Ca(2+) spiking and MEAs.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Canabinoides/farmacologia , Eletrofisiologia/instrumentação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Canabinoides/síntese química , Eletrodos , Feminino , Hipocampo/citologia , Gravidez , Ratos
9.
FASEB J ; 30(5): 1927-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839377

RESUMO

Receptor mediated transcytosis harnessing the cellular uptake and transport of natural ligands across the blood-brain barrier (BBB) has been identified as a means for antibody delivery to the CNS. In this study, we characterized bispecific antibodies in which a BBB-crossing antibody fragment FC5 was used as a BBB carrier. Cargo antibodies were either a high-affinity, selective antibody antagonist of the metabotropic glutamate receptor-1 (BBB-mGluR1), a widely abundant CNS target, or an IgG that does not bind the CNS target (BBB-NiP). Both BBB-NiP and BBB-mGluR1 demonstrated a similar 20-fold enhanced rate of transcytosis across an in vitro BBB model compared with mGluR1 IgG fused to a control antibody fragment. All 3 bispecific antibodies exhibited identical pharmacokinetics in vivo Comparative assessment of BBB-NiP and BBB-mGluR1 revealed that, whereas their serum pharmacokinetics and BBB penetration were identical, their central disposition (brain levels) and elimination (cerebrospinal fluid levels) were widely different, due to central target-mediated removal of the mGluR1-engaging antibody. Central mGluR1 target engagement after systemic administration was demonstrated by a dose-dependent inhibition of mGluR-1-mediated thermal hyperalgesia and by colocalization of the antibody with thalamic neurons involved in mGluR1-mediated pain processing. We demonstrate the feasibility of targeting central G-protein-coupled receptors using a BBB-crossing bispecific antibody approach and emerging principles that govern brain distribution and disposition of these antibodies. These data will be important for designing safe and selective CNS antibody therapeutics.-Webster, C. I., Caram-Salas, N., Haqqani, A. S., Thom, G., Brown, L., Rennie, K., Yogi, A., Costain, W., Brunette, E., Stanimirovic, D. B. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1.


Assuntos
Anticorpos Biespecíficos/farmacologia , Encéfalo/metabolismo , Dor/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Analgésicos , Animais , Produtos Biológicos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Camelidae , Membrana Celular , Células HEK293 , Temperatura Alta/efeitos adversos , Humanos , Imunoconjugados/metabolismo , Imunoglobulina G/imunologia , Dor/etiologia , Engenharia de Proteínas/métodos , Ratos , Receptores de Glutamato Metabotrópico/metabolismo
10.
Histol Histopathol ; 31(7): 699-719, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26892388

RESUMO

The current paper is a continuation of our work most recently described in Kablar, 2011. Here, we show lists of up- and down-regulated genes obtained by a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other. We wanted to see if/how the myogenic program couples with the neurotrophic one, and also to separate Lateral from Medial column trophic requirements, potentially relevant to Motor Neuron Diseases with the predilection for the Lateral column. Several follow-up steps revealed that Kif5c, Stxbp1 and Polb, differentially expressed in the MyoD-/- limb muscle, and Ppargc1a, Glrb and Hoxd10, differentially expressed in the Myf5-/- back muscle, are actually regulators of motor neuron numbers. We propose a series of follow-up experiments and various ways to consider our current data.


Assuntos
Neurônios Motores/citologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Neurogênese/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
11.
Chem Phys Lipids ; 194: 117-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26200920

RESUMO

Caged ceramide analogues (C6-, C16-, C18-, C22- and C24-Cer) have been prepared by introducing a hydrophilic coumarin-based cage bearing a short polyethylene glycol (PEG) chain. (6-Bromo-7-mTEGylated-coumarin-4-yl)methyl (Btc) caged ceramide showed efficient photo-uncaging to release the parent ceramide upon direct exposure to 350 nm UV light; in contrast (7-mTEGylated-coumarin-4-yl)methyl (Tc) caged ceramide was photolysed more slowly. In preliminary experiments, Btc-caged ceramides were taken up by cells and their photolysis led to decreases in cell viability, but not to activation of caspase enzymes, suggesting that either reactive oxygen species or an alternate caspase-independent pathway may be responsible for the decreases in cell viability caused by photolysis of caged ceramides.


Assuntos
Ceramidas/farmacologia , Ceramidas/efeitos da radiação , Cumarínicos/química , Fotólise/efeitos da radiação , Polietilenoglicóis/química , Raios Ultravioleta , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/síntese química , Ceramidas/química , Células HeLa , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Can J Physiol Pharmacol ; 92(12): 1001-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25388371

RESUMO

S-nitrosoglutathione (GSNO) is an endogenously produced S-nitrosylating compound that controls the function of various proteins. While a number of rodent cell lines have been used to study GSNO-induced apoptosis, the mechanisms of action remain to be evaluated in human cells and in parallel with other common apoptosis-inducing agents. In this study, we compared the pro-apoptotic effects of GSNO and staurosporine (STS) on human neural progenitors (NT2, hNP1) and neuroblasts (SH-SY5Y). We show that these cells exhibit comparable levels of susceptibility to GSNO- and STS-induced apoptotic cell death, as demonstrated by condensed nuclei and CASP3 activation. Mechanistic differences in apoptotic responses were observed as differential patterns of DNA fragmentation and levels of BAX, BCL-XL, CASP8, and p-ERK in response to GSNO and STS treatment. Mitochondrial membrane potential analysis revealed that NT2 and hNP1 cells, but not SH-SY5Y cells, undergo mitochondrial hyperpolarization in response to short-term exposure to STS prior to undergoing subsequent depolarization. This is the first study to report differences in apoptotic responses to GSNO and STS in 3 complementary human neural cell lines. Furthermore, these cells represent useful tools in cell pharmacological paradigms in which susceptibility to apoptosis-inducing agents needs to be assessed at different stages of neural cell fate commitment and differentiation.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , S-Nitrosoglutationa/farmacologia , Estaurosporina/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular , Linhagem Celular , Núcleo Celular/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , S-Nitrosoglutationa/metabolismo
13.
Histol Histopathol ; 29(11): 1377-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24867377

RESUMO

As a continuation of the previous study on palate development (Rot and Kablar, 2013), here we explore the relationship between the secondary cartilage mandibular condyles (parts of the temporomandibular joint) and the contributions (mechanical and secretory) from the adjacent skeletal musculature. Previous analysis of Myf5-/-:MyoD-/- mouse fetuses lacking skeletal muscle demonstrated the importance of muscle contraction and static loading in mouse skeletogenesis. Among abnormal skeletal features, micrognathia (mandibular hypoplasia) was detected: small, bent and posteriorly displaced mandible. As an example of Waddingtonian epigenetics, we suggest that muscle, in addition to acting via mechanochemical signal transduction pathways, networks and promoters, also exerts secretory stimuli on skeleton. Our goal is to identify candidate molecules at that muscle-mandible interface. By employing Systematic Subtractive Microarray Analysis approach, we compared gene expression between mandibles of amyogenic and wild type mouse fetuses and we identified up- and down-regulated genes. This step was followed by a bioinformatics approach and consultation of web-accessible mouse databases. We searched for individual tissue-specific gene expression and distribution, and for the functional effects of mutations in a particular gene. The database search tools allowed us to generate a set of candidate genes with involvement in mandibular development: Cacna1s, Ckm, Des, Mir300, Myog and Tnnc1. We also performed mouse-to-human translational experiments and found analogies. In the light of our findings we discuss various players in mandibular morphogenesis and make an argument for the need to consider mandibular development as a consequence of reciprocal epigenetic interactions of both skeletal and non-skeletal compartments.


Assuntos
Biologia Computacional/métodos , Mandíbula/embriologia , Músculo Esquelético/embriologia , Animais , Cartilagem/fisiologia , Bases de Dados Genéticas , Epigênese Genética , Regulação da Expressão Gênica , Genótipo , Humanos , Internet , Mandíbula/fisiologia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/fisiologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
14.
Chem Commun (Camb) ; 47(32): 9236-8, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21761060

RESUMO

The bioactivity of natural, long-chain ceramides has until now been studied after its delivery to cells in organic solvent mixtures containing dodecane. We have synthesized ceramides conjugated to a (6-bromo-7-hydroxycoumarin-4-yl)methyl group. The photocaged ceramide is efficiently released with 350 nm light in aqueous solution at neutral pH, thus providing a promising new tool to study ceramide's properties.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Animais , Bromo/química , Bromo/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Ceramidas/síntese química , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/metabolismo , Macrófagos/metabolismo , Fotólise
15.
Proteomics ; 10(18): 3272-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20718007

RESUMO

Cerebral ischemia (CI) induces dramatic changes in synaptic structure and function that precedes delayed post-ischemic neuronal death. Here, a proteomic analysis was used to identify the effects of focal CI on synaptosomal protein levels. Contralateral and ipsilateral synaptosomes, prepared from adult mice subjected to 60 min middle cerebral artery occlusion, were isolated following 3, 6 and 20 h of reperfusion. Synaptosomal protein samples (n=3) were labeled using the cleavable ICAT system prior to analysis with nanoLC-MS/MS. Each sample was analyzed by LC-MS to identify differential expressions using InDEPT software and differentially expressed peptides were identified by targeted LC-MS/MS. A total of 62 differentially expressed proteins were identified and Gene Ontology classification (cellular component) indicated that the majority of the proteins were located in the mitochondria and other components consistent with synaptic localization. The observed alterations in synaptic protein levels poorly correlated with gene expression, indicating the involvement of post-transcriptional regulatory mechanisms in determining post-ischemic synaptic protein content. Additionally, immunohistochemistry analysis of prosaposin (Psap) and saposin C (SapC) indicates that CI disrupts Psap processing and glycosphingolipid metabolism. These results demonstrate that the synapse is adversely affected by CI and may play a role in mediating post-ischemic neuronal viability.


Assuntos
Isquemia Encefálica/metabolismo , Lisossomos/química , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Sinaptossomos/química , Animais , Isquemia Encefálica/genética , Regulação da Expressão Gênica , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Saporinas , Sinaptossomos/metabolismo
16.
J Cereb Blood Flow Metab ; 28(1): 99-110, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17519975

RESUMO

Synaptic pathology is observed during hypoxic events in the central nervous system in the form of altered dendrite structure and conductance changes. These alterations are rapidly reversible, on the return of normoxia, but are thought to initiate subsequent neuronal cell death. To characterize the effects of hypoxia on regulators of synaptic stability, we examined the temporal expression of cell adhesion molecules (CAMs) in synaptosomes after transient middle cerebral artery occlusion (MCAO) in mice. We focused on events preceding the onset of ischemic neuronal cell death (<48 h). Synaptosome preparations were enriched in synaptically localized proteins and were free of endoplasmic reticulum and nuclear contamination. Electron microscopy showed that the synaptosome preparation was enriched in spheres (approximately 650 nm in diameter) containing secretory vesicles and postsynaptic densities. Forebrain mRNA levels of synaptically located CAMs was unaffected at 3 h after MCAO. This is contrasted by the observation of consistent downregulation of synaptic CAMs at 20 h after MCAO. Examination of synaptosomal CAM protein content indicated that certain adhesion molecules were decreased as early as 3 h after MCAO. For comparison, synaptosomal Agrn protein levels were unaffected by cerebral ischemia. Furthermore, a marked increase in the levels of p-Ctnnb1 in ischemic synaptosomes was observed. p-Ctnnb1 was detected in hippocampal fiber tracts and in cornu ammonis 1 neuronal nuclei. These results indicate that ischemia induces a dysregulation of a subset of synaptic proteins that are important regulators of synaptic plasticity before the onset of ischemic neuronal cell death.


Assuntos
Moléculas de Adesão Celular/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Agrina/metabolismo , Animais , Morte Celular , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Infarto da Artéria Cerebral Média/patologia , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/ultraestrutura , Prosencéfalo/metabolismo , Prosencéfalo/ultraestrutura , RNA Mensageiro/metabolismo , Vesículas Secretórias/ultraestrutura , Sinapses/ultraestrutura , Sinaptossomos/ultraestrutura , Fatores de Tempo , beta Catenina/metabolismo
17.
Brain Res ; 1094(1): 24-37, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16730676

RESUMO

Mammalian genomes are burdened with a large heterogeneous group of endogenous replication defective retroviruses (retrotransposons). Previously, we identified a transcript resembling a virus-like 30S (VL30) retrotransposon increasing in mouse brain following transient cerebral ischemia. Paradoxically, this non-coding RNA was found bound to polyribosomes. Further analysis revealed that multiple retrotransposon species (BVL-1-like and mVL30-1-like) were bound to polyribosomes and induced by ischemia. These VL30 transcripts remained associated with polyribosomes in the presence of 0.5 M KCl, indicating that VL30 mRNA was tightly associated with ribosomal subunits. Furthermore, the profile of BVL-1 distribution on polyribosomal profiles was distinct from those of translated and translationally repressed mRNA. Consistent with expectations, 5.0 kb VL30 transcripts were detected in ischemic brain with a temporal pattern of expression that was distinct from c-fos. Expression of VL30 was localized in neurons using a combination of in situ hybridization and immunocytochemistry. 3'-RACE-PCR experiments yielded two unique sequences (VL30x-1 and VL30x-2) that were homologous to known VL30 genes. Phylogenetic analysis of VL30 promoter sequence (U3 region) resulted in the identification of two large VL30 subgroups. VL30x-1 and VL30x-2 were closely related and classified in a group that was distinct from the well-characterized VL30 genes BVL-1 and mVL30-1. The promoter regions of VL30x-1 and VL30x-2 did not possess the consensus sequences for either hypoxia or anoxia response elements, suggesting an alternative mechanism for induction. This is the first report that demonstrates ischemia-induced, neuronal expression of unique VL30 retrotransposons in mouse brain.


Assuntos
Isquemia Encefálica/genética , Infarto Cerebral/genética , Regulação da Expressão Gênica/genética , Neurônios/metabolismo , Polirribossomos/genética , Retroelementos/genética , Animais , Sequência de Bases/genética , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Infarto Cerebral/metabolismo , Infarto Cerebral/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Polirribossomos/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae/genética , Homologia de Sequência do Ácido Nucleico
18.
Brain Res ; 1088(1): 176-86, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16626669

RESUMO

Huntington's disease (HD) is an inherited, progressive neurodegenerative disorder caused by CAG repeat expansion in the gene that codes for the protein huntingtin. The underlying neuropathological events leading to the selectivity of striatal neuronal loss are unknown. However, the huntingtin mutation interferes at several levels of normal cell function. The complexity of this disease makes microarray analysis an appealing technique to begin the identification of common pathways that may contribute to the pathology. In this study, striatal tissue was extracted for gene expression profiling from wild-type and symptomatic transgenic Huntington mice (R6/2) expressing part of the human Huntington's disease gene. We interrogated a 15 K high-density mouse EST array not previously used for HD and identified 170 significantly differentially expressed ESTs in symptomatic R6/2 mice. Of the 80 genes with known function, 9 genes had previously been identified as altered in HD. 71 known genes were associated with HD for the first time. The data obtained from this study confirm and extend previous observations using DNA microarray techniques on genetic models for HD, revealing novel changes in expression in a number of genes not previously associated with HD. Further bioinformatic analysis, using software to construct biological association maps, focused attention on proteins such as insulin and TH1-mediated cytokines, suggesting that they may be important regulators of affected genes. These results may provide insight into the regulation and interaction of genes that contribute to adaptive and pathological processes involved in HD.


Assuntos
Corpo Estriado/metabolismo , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Doença de Huntington , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Biologia Computacional/métodos , Corpo Estriado/patologia , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Inflamação/genética , Inflamação/metabolismo , Insulina/genética , Insulina/metabolismo , Camundongos , Camundongos Transgênicos
19.
J Pharmacol Exp Ther ; 315(3): 1228-36, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16126839

RESUMO

The present study was undertaken to investigate the role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) and its conformationally constrained analog 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) in modulating agonist binding to human dopamine (DA) receptor subtypes using human neuroblastoma SH-SY5Y cells stably transfected with respective cDNAs. Both PLG and PAOPA enhanced agonist [3H]N-propylnorapomorphine (NPA) and [3H]quinpirole binding in a dose-dependent manner to the DA D2L,D2S, and D4 receptors. However, agonist binding to the D1 and D3 receptors and antagonist binding to the D2L receptors by PLG were not significantly affected. Scatchard analysis of [3H]NPA binding to membranes in the presence of PLG revealed a significant increase in affinity of the agonist binding sites for the D2L, D2S, and D4 receptors. Analysis of agonist/antagonist competition curves revealed that PLG and PAOPA increased the population and affinity of the high-affinity form of the D2L receptor and attenuated guanosine 5'-(beta,gamma-imido)-triphosphate-induced inhibition of high-affinity agonist binding sites for the DA D2L receptor. Furthermore, direct NPA binding with D2L cell membranes pretreated with suramin, a compound that can uncouple receptor/G protein complexes, and incubated with and without DA showed that both PLG and PAOPA had only increased agonist binding in membranes pretreated with both suramin and DA, suggesting that PLG requires the D2L receptor/G protein complex to increase agonist binding. These results suggest that PLG possibly modulates DA D2S, D2L, and D4 receptors in an allosteric manner and that the coupling of D2 receptors to the G protein is essential for this modulation to occur.


Assuntos
Agonistas de Dopamina/farmacologia , Hormônio Inibidor da Liberação de MSH/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Receptores Dopaminérgicos/classificação , Receptores Dopaminérgicos/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular Tumoral , Agonistas de Dopamina/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Modelos Químicos , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Suramina/farmacologia
20.
J Cereb Blood Flow Metab ; 23(10): 1195-211, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14526230

RESUMO

Cell death from cerebral ischemia is a dynamic process. In the minutes to days after an ischemic insult, progressive changes in cellular morphology occur. Associated with these events is the regulation of competing programs of gene expression; some are protective against ischemic insult, and others contribute to delayed cell death. Many genes involved in these processes have been identified, but individually, these findings have provided only limited insight into the systems biology of cerebral ischemia. Attempts to characterize the coordinated expression of large numbers of genes in cerebral ischemia has only recently become possible. Today, DNA microarray technology provides a powerful tool for investigating parallel expression changes for thousands of genes at one time. In this study, adult mice were subjected to 30 minutes of hypoxia-ischemia (HI), and the hippocampus was examined 12 hours later for differential gene expression using a 15K high-density mouse EST array. The genomic response to HI is complex, affecting approximately 7% of the total number of ESTs examined. Assigning differentially expressed ESTs to molecular functional groups revealed that HI affects many pathways including the molecular chaperones, transcription factors, kinases, and calcium ion binding genes. A comprehensive list of regulated genes should prove valuable in advancing our understanding of the pathogenesis of cerebral ischemia.


Assuntos
Química Encefálica/genética , Hipocampo/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Regulação da Expressão Gênica/fisiologia , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...