Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 8(2): e55288, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424628

RESUMO

BACKGROUND: The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. CONCLUSIONS/SIGNIFICANCE: GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation.


Assuntos
Glutationa/análogos & derivados , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Sobrevivência de Tecidos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Separação Celular , Glutationa/farmacologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo
2.
Diabetes Metab Res Rev ; 29(4): 296-307, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23315923

RESUMO

BACKGROUND: Loss of ß-cell function hastens deterioration of metabolic control in type 2 diabetes patients. Besides amyloid deposit and glucolipotoxicity, advanced glycation end products (AGEs) acting through their receptors (RAGE) seem to contribute to this process by promoting islet apoptosis. In order to investigate the role of AGEs in ß-cell deterioration, we evaluated the temporal and dose effects of AGE compounds on apoptosis rate, reactive oxygen species generation and expression of pro-apoptotic and anti-apoptotic genes in cultured islets. METHODS: Rat pancreatic islets were exposed or not for 24, 48, 72 and 96 h to albumin modified by glycoaldehyde. Apoptosis, reactive oxygen species and superoxide content and NADPH oxidase activity were evaluated as well as RNA expression of the genes Ager (codes for RAGE), Bax, Bcl2 and Nfkb1. RESULTS: In 24 and 48 h, glycoaldehyde elicited a decrease in apoptosis rate in comparison with the control condition concomitantly with a reduction in Bax/Bcl2 RNA ratio and in Nfkb1 RNA expression. In contrast, after 72 and 96 h, glycoaldehyde promoted an increase in apoptosis rate concomitantly with an increase in Bax/Bcl2 RNA ratio and in Nfkb1 RNA expression. In 24 h, glycoaldehyde elicited a decrease in the islet content of reactive oxygen species, whereas after 48 and 72 h, it promoted an opposite effect, increasing superoxide generation. The NADPH oxidase inhibitor VAS2870 attenuated superoxide production, implicating NADPH oxidase as an important source of reactive oxygen species in islets exposed to AGEs. CONCLUSIONS: Albumin modified by glycoaldehyde exerted a dual effect in cultured pancreatic islets, being protective against apoptosis after short exposure but pro-apoptotic after prolonged exposure.


Assuntos
Apoptose , Produtos Finais de Glicação Avançada/metabolismo , Ilhotas Pancreáticas/patologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Albuminas/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Glucose/metabolismo , Produtos Finais de Glicação Avançada/genética , Ilhotas Pancreáticas/metabolismo , Luminescência , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
3.
Diabetol Metab Syndr ; 5(1): 1, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23298687

RESUMO

To explore the molecular pathways underlying thiazolidinediones effects on pancreatic islets in conditions mimicking normo- and hyperglycemia, apoptosis rate and transcriptional response to Pioglitazone at both physiological and supraphysiological glucose concentrations were evaluated. Adult rat islets were cultured at physiological (5.6 mM) and supraphysiological (23 mM) glucose concentrations in presence of 10 µM Pioglitazone or vehicle. RNA expression profiling was evaluated with the PancChip 13k cDNA microarray after 24-h, and expression results for some selected genes were validated by qRT-PCR. The effects of Pioglitazone were investigated regarding apoptosis rate after 24-, 48- and 72-h. At 5.6 mM glucose, 101 genes were modulated by Pioglitazone, while 1,235 genes were affected at 23 mM glucose. Gene networks related to lipid metabolism were identified as altered by Pioglitazone at both glucose concentrations. At 23 mM glucose, cell cycle and cell death pathways were significantly regulated as well. At 5.6 mM glucose, Pioglitazone elicited a transient reduction in islets apoptosis rate while at 23 mM, Bcl2 expression was reduced and apoptosis rate was increased by Pioglitazone. Our data demonstrate that the effect of Pioglitazone on gene expression profile and apoptosis rate depends on the glucose concentration. The modulation of genes related to cell death and the increased apoptosis rate observed at supraphysiological glucose concentration raise concerns about Pioglitazone's direct effects in conditions of hyperglycemia and reinforce the necessity of additional studies designed to evaluate TZDs effects on the preservation of ß-cell function in situations where glucotoxicity might be more relevant than lipotoxicity.

4.
São Paulo; s.n; 2011. 100 p. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-655501

RESUMO

A perda da função das células beta acelera a deterioração do controle metabólico em pessoas com diabetes tipo 2. Além da lipo- e da glicotoxicidade, os AGEs parecem contribuir para esse processo, promovendo a apoptose das ilhotas pancreáticas. Em outros tecidos, os AGEs interagem com seu receptor específico (RAGE), produzindo espécies reativas de oxigênio (ROS) e ativando o NF-kB. Para investigar o efeito temporal dos AGEs sobre a apoptose de ilhotas, bem como o potencial de compostos antioxidantes para diminuir danos causados pelos AGEs, ilhotas pancreáticas de ratos foram tratadas durante 24, 48, 72, 96 e 120 h com AGEs gerados a partir de co-incubação de albumina de soro bovino (BSA) com Dgliceraldeído (GAD, 5 mg/mL) ou tampão fostato (controle). A apoptose foi avaliada pela quantificação do DNA fragmentado (ELISA), atividade de caspase 3 e detecção da permeabilidade da membrana mitocondrial (MitoProbe JC-1). O estresse oxidativo foi avaliado pela detecção de espécies de oxigênio (Image-iT LIVE Green) e a atividade da NADPH oxidase foi mensurada pelo método de quimioluminescência da lucigenina. A expressão dos genes Bax, Bcl2 e Nfkb1 foi avaliada por reação em cadeia da polimerase quantitativa após transcrição reversa (RT-qPCR)...


Loss of beta cell function hastens the deterioration of metabolic control in people with type 2 diabetes. Besides lipo- and glucotoxicity, AGEs seem to contribute to this process by promoting islet apoptosis. In other tissues, AGEs interact with their specific receptors (RAGE) and elicit reactive oxygen species (ROS) generation and NF-kB activation. In order to investigate the temporal effect of AGEs on islet apoptosis as well as the potential of antioxidant compounds to decrease islet damage caused by AGEs, rat pancreatic islets were treated for 24, 48, 72, 96 and 120 h with either AGEs generated from co-incubation of bovine serum albumin (BSA) with D-glyceraldehyde (GAD, 5 mg/mL) or phosphate-buffered saline (PBS, control). Apoptosis was evaluated by quantification of DNA fragmentation (ELISA), caspase-3 enzyme activity and detection of mitochondrial permeability transition (MitoProbe JC-1). Oxidative stress was evaluated by oxygen species detection (Image-iT LIVE Green) and the activity of NADPH oxidase was measured by the lucigenin-enhanced chemiluminescence method. The expression of the genes Bax, Bcl2 and Nfkb1 was evaluated by reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR). In one of the time points at which increased apoptosis was detected, the effect of two antioxidant compounds was evaluated: benfotiamine (350 M), a liposoluble vitamin B1, and Mito Q (1 M), a derivative of ubiquinone targeted to mitochondria. In 24 and 48 h, AGEs elicited a significant decrease in the apoptosis rate in comparison to the control condition concomitantly with a significant increase in the RNA expression of the antiapoptotic gene Bcl2 and a significant decrease in the...


Assuntos
Adulto , Ratos , Apoptose , Ilhotas Pancreáticas , Estresse Oxidativo , Produtos Finais de Glicação Avançada , Ratos Wistar , Tiamina/análogos & derivados , Ubiquinona/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...