Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 49(9): 4023-35, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20349981

RESUMO

A new helical dimeric copper(I) complex [Cu(2)(mphenpr)(2)](ClO(4))(2) where mphenpr is 1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane has been prepared and characterized by X-ray crystallography and NMR. In the solid state, the metal centers are 6.42 A apart, and the electronic structure has been investigated with use of density functional theory (DFT) calculations. In solution the dimer equilibrates with a monomeric form [Cu(mphenpr)](ClO(4)), and the mechanism of unfolding of the dimer into monomer has been studied. In the presence of CCl(4), formation of the monomer is coupled to the reductive dehalogenation of the halocarbon. The mechanism of this process has been probed by the study of short-lived potential reaction intermediates using fast kinetic pulse radiolysis techniques and comparisons with DFT calculations. The copper(II) product [Cu(mphenpr)Cl](ClO(4)) and an analogue [Cu(mphenpr)](ClO(4))(2) have been isolated and characterized by X-ray crystallography.


Assuntos
Tetracloreto de Carbono/química , Compostos Organometálicos/química , Simulação por Computador , Cristalografia por Raios X , Dimerização , Halogenação , Modelos Químicos , Modelos Moleculares , Compostos Organometálicos/síntese química
2.
J Phys Chem A ; 109(6): 1196-204, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16833430

RESUMO

Two quantum chemistry theoretical models in the gas phase at the density functional theory B3LYP/LACVP(d) level of calculation are proposed to rationalize the hydrazine oxidation by cobalt(II) phthalocyanine (Co(II)Pc). This oxidation reaction involves the net transfer of four electrons. These theoretical models that are described in terms of energy profiles include a through-space mechanism for the transfer of the first electron of the hydrazine and a through-bond mechanism proposed for the transfer of the three electrons remaining. The main difference between both models arises from a one-electron and one-proton alternate transfer for model 1 and a two-electron and two-proton alternate transfer for model 2. The main problem for experimental studies is to determine if the first transfer corresponds to an electron or a chemical transfer. Under this point of view, we proposed two models which deal with this problem. We conclude that model 1 is more reasonable than model 2 because the whole oxidation process is always exergonic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...