Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 21887-21900, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38989247

RESUMO

In this work, an analytical approach was developed for Pb, Sr, and Fe isotopic analysis of archaeological samples recovered from an iron work site by using multi-collector inductively coupled plasma - mass spectrometry (MC-ICP-MS). The sample types include slag, coal, clay and hammer scales, all obtained from an archaeological site at Hoeke (Belgium). Despite the wide concentration range of the target elements present in the samples and some sample manipulations necessarily performed outside of a clean laboratory facility, the analytical procedure yielded accurate and precise results for QA/QC standards while blank levels were negligible. Preliminary results concerning Pb, Sr and Fe isotope ratio variations in archaeological materials associated with iron working processes are provided. The samples revealed high variability in metal isotopic compositions, with the 208Pb/207Pb ratio ranging from 2.4261 to 2.4824, the 87Sr/86Sr ratio from 0.7100 to 0.7220, and δ 56Fe values from -0.34 to +0.08‰, which was tentatively attributed to the mixing of materials during the iron production process or variability within the source material. Also, contamination introduced by coal and furnace/hearth lining material could have contributed to the wide range of isotopic compositions observed. Because of the absence of information and data for primary ore samples to compare with, the provenance of the materials could not be established. The present study highlights the challenges in interpreting archaeological data, particularly in terms of the isotopic variability observed. It underscores the necessity of integrating analysis data with historical and archaeological knowledge. Further research, involving detailed analysis of these source materials combined with robust historical evidence, is essential to validate hypotheses concerning the origin of iron.

2.
Anal Chim Acta ; 1315: 342812, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879212

RESUMO

BACKGROUND: Potassium isotopic analysis is increasingly performed in both geological and biological contexts as a result of the introduction of MC-ICP-MS instrumentation either equipped with a collision/reaction cell or having the capability of working at "extra-high" mass resolution in order to deal with spectral interference caused by argon hydride (ArH+) ions. Potassium plays an important role in the central nervous system, and its isotopic analysis could provide an enhanced insight into the corresponding processes, but K isotopic analysis of cerebrospinal fluid is challenging due to the small volume, a few microliter only, typically available. This work aimed at developing a method for determining the K isotopic signature of serum and cerebrospinal fluid at a final K concentration of 25 ng mL-1 using Faraday cup amplifiers equipped with a 1013 Ω resistor. RESULTS: Potassium isotope ratios obtained for reference materials measured at a final K concentration of 25 ng mL-1 were in excellent agreement with the corresponding reference values and the internal and external precision for the δ41K value was 0.11 ‰ (2SE, N = 50) and 0.10 ‰ (2SD, N = 6), respectively. The robustness against the presence of matrix elements and the concentration mismatch between sample and standard observed at higher K concentrations is preserved at low K concentration. Finally, K isotopic analysis of serum and cerebrospinal fluid (3-12 µL of sample) of healthy mice of both sexes was performed, revealing a trend towards an isotopically lighter signature for serum and cerebrospinal fluid from female individuals, however being significant for serum only. SIGNIFICANCE: This work provides a robust method for high-precision K isotopic analysis at a concentration of 25 ng mL-1. By monitoring both K isotopes, 39K and 41K, with Faraday cups connected to amplifiers with 1013 Ω resistors, accurate K isotope ratio results are obtained with a two-fold improvement in internal and external precision compared to those obtained with the set-up with traditional 1011 Ω resistors. The difference in the K isotope ratio in CSF and serum between the sexes, is possibly indicating an influence of the sex or hormones on the fractionation effects accompanying cellular uptake/release.


Assuntos
Espectrometria de Massas , Potássio , Animais , Potássio/sangue , Potássio/líquido cefalorraquidiano , Feminino , Masculino , Camundongos , Isótopos , Humanos
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958667

RESUMO

Hypomagnesemia was historically prevalent in individuals with type 1 diabetes mellitus (T1DM), but contemporary results indicate an incidence comparable to that in the general population, likely due to improved treatment in recent decades, resulting in better glycemic control. However, a recent study found a significant difference between the serum Mg isotopic composition of T1DM individuals and controls, indicating that disruptions to Mg homeostasis persist. Significant deviations were also found in samples taken one year apart. To investigate whether the temporal variability in serum Mg isotopic composition is linked to the transient impact of administered insulin, Mg isotope ratios were determined in serum from 15 T1DM individuals before and one hour after insulin injection/meal consumption using multi-collector inductively coupled plasma-mass spectrometry. Consistent with results of the previous study, significant difference in the serum Mg isotopic composition was found between T1DM individuals and 10 sex-matched controls. However, the average difference between pre- and post-insulin injection/meal T1DM samples of 0.05 ± 0.13‱ (1SD) was not significant. No difference was observed for controls before (-0.12 ± 0.16‱) and after the meal (-0.10 ± 0.13‱) either, suggesting a lack of a postprandial Mg isotopic response within one hour of food consumption, and that the timing of the most recent meal may not require controlling for when determining serum Mg isotopic composition.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Isótopos , Magnésio , Insulina , Insulina Regular Humana
4.
Biology (Basel) ; 12(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37372142

RESUMO

Alzheimer's' disease (AD) is characterized by the formation of ß-amyloid (Aß) plaques and neurofibrillary tangles of tau protein in the brain. Aß plaques are formed by the cleavage of the ß-amyloid precursor protein (APP). In addition to protein aggregations, the metabolism of the essential mineral element Cu is also altered during the pathogenesis of AD. The concentration and the natural isotopic composition of Cu were investigated in blood plasma and multiple brain regions (brain stem, cerebellum, cortex, and hippocampus) of young (3-4 weeks) and aged (27-30 weeks) APPNL-G-F knock-in mice and wild-type controls to assess potential alterations associated with ageing and AD. Tandem inductively coupled plasma-mass spectrometry (ICP-MS/MS) was used for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for high-precision isotopic analysis. The blood plasma Cu concentration was significantly altered in response to both age- and AD-related effects, whereas the blood plasma Cu isotope ratio was only affected by the development of AD. Changes in the Cu isotopic signature of the cerebellum were significantly correlated with the changes observed in blood plasma. The brain stem showed a significant increase in Cu concentration for both young and aged AD transgenic mice compared with healthy controls, whereas the Cu isotopic signature became lighter as a result of age-related changes. In this work, ICP-MS/MS and MC-ICP-MS provided relevant and complementary information on the potential role of Cu in ageing and AD.

5.
Am J Biol Anthropol ; 181(2): 231-249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021710

RESUMO

OBJECTIVES: So far, no 87 Sr/86 Sr mobility studies have been done for Neolithic remains from Belgium and information on the Sr isotopic variability in the region is scarce. This study aims to explore mobility in a Final Neolithic population from the funerary cave 'Grotte de La Faucille', contribute to the understanding of the isotopic composition of bioavailable Sr in Belgium, assess evidence for male mobility using proteomic analysis, and explore possible places of origin for nonlocal individuals. MATERIALS AND METHODS: The 87 Sr/86 Sr isotope ratio of dental enamel from six adults and six juveniles was determined. Liquid chromatography mass spectrometry-based protein analysis was employed to identify individuals of male biological sex. 87 Sr/86 Sr of micromammal teeth, snail shells, and modern plants from three geological areas in Belgium were measured to establish isotopic signatures for bioavailable strontium. Nonlocality was assessed by comparing human 87 Sr/86 Sr isotope ratios to the 87 Sr/86 Sr range for bioavailable Sr. RESULTS: Four individuals yielded 87 Sr/86 Sr isotope ratios consistent with a nonlocal origin. No statistical differences were found between adults and juveniles. Three males were detected in the sample set, of which two show nonlocal 87 Sr/86 Sr values. DISCUSSION: This study provides evidence for mobility in Final Neolithic Belgium. The four nonlocal 87 Sr/86 Sr signatures correspond with the 87 Sr/86 Sr of bio-available Sr in Dutch South Limburg, the Black Forest in Southwest Germany, and regions of France, such as parts of the Paris Basin and the Vosges. The results support the ruling hypothesis of connections with Northern France, brought to light by archeological research.


Assuntos
Proteômica , Isótopos de Estrôncio , Masculino , Adulto , Humanos , Bélgica , Isótopos de Estrôncio/análise , Isótopos/análise , Estrôncio/análise
6.
Front Chem ; 10: 896279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783204

RESUMO

The concentration and the isotopic composition of the redox-active essential elements Cu and Fe were investigated in blood plasma and specific brain regions (hippocampus, cortex, brain stem and cerebellum) of mice to assess potential alterations associated with sepsis-associated encephalopathy induced by lipopolysaccharide (LPS) administration. Samples were collected from young (16-22 weeks) and aged (44-65 weeks) mice after intraperitoneal injection of the LPS, an endotoxin inducing neuroinflammation, and from age- and sex-matched controls, injected with phosphate-buffered saline solution. Sector-field single-collector inductively coupled plasma-mass spectrometry was relied upon for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry for isotopic analysis. Significant variations were observed for the Cu concentration and for the Cu and Fe isotope ratios in the blood plasma. Concentrations and isotope ratios of Cu and Fe also varied across the brain tissues. An age- and an inflammatory-related effect was found affecting the isotopic compositions of blood plasma Cu and cerebellum Fe, whereas a regional Cu isotopic redistribution was found within the brain tissues. These findings demonstrate that isotopic analysis of essential mineral elements picks up metabolic changes not revealed by element quantification, making the two approaches complementary.

7.
Anal Bioanal Chem ; 414(1): 515-524, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34173037

RESUMO

Glaucoma is a multifactorial eye disease, characterized by progressive optic neurodegeneration. Elevation of the intraocular pressure is the main risk factor for glaucoma and is a consequence of an imbalance in the aqueous humor hydrodynamics, the physiology of which is influenced by the homeostatic equilibrium of essential elements, oxidative stress, and antioxidants. The aim of this work was to study local alterations in glaucomatous patients from two different, but connected, points of view: (i) the total antioxidant capacity (as an indicator of oxidative damage) and (ii) the concentration of mineral elements and their isotopic composition. Such objective was pursued using aqueous humor from patients diagnosed with pseudoexfoliation glaucoma (PEXG, n = 17) and primary open-angle glaucoma (POAG, n = 5) and age-matched control subjects (n = 16). The total antioxidant capacity (TAC) was examined in both aqueous humor and 60 serum samples (n = 20 controls, n = 20 for PEXG, and n = 20 for POAG), both showing higher TAC for the glaucoma population. The concentrations of the essential mineral elements (Cu, Fe, Mg, Na, P, and Zn) and the isotopic compositions of Cu and Zn were determined in aqueous humor using single-collector and multi-collector inductively coupled plasma-mass spectrometry, respectively. Significant differences were established for Mg and P levels when comparing the results for glaucomatous patients with those for the control population (p < 0.01 and p < 0.05 for Mg and P respectively, ANOVA and Kruskal-Wallis). The Zn isotopic composition was significantly shifted from that for the control population for PEXG patients. A significant difference in the isotopic composition of Zn was also established between the PEXG and POAG glaucoma cohorts.


Assuntos
Síndrome de Exfoliação , Glaucoma de Ângulo Aberto , Glaucoma , Antioxidantes/análise , Humor Aquoso , Glaucoma de Ângulo Aberto/diagnóstico , Humanos
8.
Front Med (Lausanne) ; 8: 664666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368182

RESUMO

Endotoxemia induced in vivo in mice by intraperitoneal injection of lipopolysaccharide (LPS) leads to (neuro)inflammation and sepsis. Also the homeostasis of mineral elements can be altered through mechanisms that still are poorly understood. The isotopic composition of Mg and the concentrations of the minor elements Ca, K, Mg, Na, P, and S were determined in biological fluids and tissues of young (14-28 weeks) and aged (40-65 weeks) LPS-injected mice and age-matched controls to reveal potential effects of the LPS-induced infection. Blood plasma of young and aged LPS-injected mice showed a heavy Mg isotopic composition, as well as elevated Mg and P concentrations, compared to matched controls. The plasma Mg isotopic composition was correlated with the P concentration in aged mice. Also the liver Mg isotopic composition was strongly affected in the young and aged LPS-injected mice, while for aged mice, an additional effect on the urine Mg isotopic composition was established. These observations were hypothetically associated with liver inflammation and/or hepatotoxicity, and reduced urinary Mg excretion, respectively. Also a regional endotoxin-induced difference was observed in the brain Mg isotopic composition for the aged mice only, and was attributed to potential disruption of the blood-brain barrier.

9.
Anal Chem ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133117

RESUMO

Potassium isotopic analysis is arousing increasing interest, not only in geochemistry, but also in biomedicine. However, real-life applications are still hindered by the lack of robustness of the methods used. In this work, a novel and robust method for high-precision K isotopic analysis of geological and biological samples was developed, based on the use of a multicollector ICP-mass spectrometer providing a mass resolving power of 15,000 (extra-high resolution mode, XHR). After evaluation of different measurement conditions, i.e., hot vs cold plasma conditions, standard-type vs jet-type sampling cone, and high resolution (HR) vs XHR, a combination of hot plasma conditions, use of the high-transmission jet-type sampling cone, and the XHR mode allowed for high-precision and interference-free K isotopic analysis. Potassium signal monitoring was performed in the ArH+ interference-free 0.006-0.007 amu wide peak shoulder using the XHR mode. The within-run, short-term external, and long-term external precisions for the δ41K value were 0.02‰ (2se, N = 50), 0.03‰ (2SD, N = 7), and 0.06‰ (2SD, N = 163), respectively. A two-stage chromatographic procedure was developed for the isolation of K from both geological and biological samples, and potential matrix effects affecting the K isotope ratio were systematically evaluated. The method was first applied to geological reference materials (RMs) for validation purposes, and the K isotope ratio results were in good agreement with those previously reported. Subsequently, a series of biological RMs, including serum, whole blood, cerebrospinal fluid, bovine muscle, and lobster hepatopancreas, were characterized for their K isotopic composition.

10.
J Biol Chem ; 296: 100292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453282

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron, and zinc. In AD, a distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau may alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe, and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared with those for the corresponding age- and sex-matched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than did those from the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain and serum of L66 mice compared with WT. For 5xFAD mice, Zn exhibited a trend toward a lighter isotopic composition in the brain and a heavier isotopic composition in serum compared with WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition may serve as a marker for proteinopathies underlying AD and other types of dementia.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Cobre/metabolismo , Ferro/metabolismo , Presenilina-1/genética , Zinco/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fosforilação , Presenilina-1/metabolismo , Agregados Proteicos/genética , Espectrofotometria Atômica , Transgenes , Proteínas tau/metabolismo
11.
Talanta ; 221: 121576, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076122

RESUMO

There is a lack of certified reference materials with an organic matrix for which metal isotope ratios have been certified. Here, we have determined the iron, copper and zinc stable isotopic compositions for six reference materials of biological origin with diverse matrices, i.e. BCR-380R (whole milk), BCR-383 (beans), ERM-CE464 (tuna fish), SRM-1577c (bovine liver), DORM-4 (fish protein) and TORT-3 (lobster hepatopancreas) in three different labs. The concentrations for six major and sixteen trace elements, spanning almost four orders of magnitude, were also measured and the results obtained show an excellent agreement with certified values, demonstrating that the dissolution step was quantitative for all the standards. By taking literature data into account, 39 possible pair-wise comparisons of mean iron, copper and zinc isotopic values (δ values) could be made. Results of Tukey multiple comparisons of means yielded 11 significantly different pairs. Most of these differences are of the same order of magnitude as the estimated mean expanded uncertainties (U, k = 2) (±0.10‰, ±0.05‰, and ±0.05‰ for the δ56Fe, δ65Cu and δ66Zn values, respectively). The present inter-comparison study finally proposes nineteen new preferred values for the Cu, Zn and Fe isotopic compositions of six reference materials of biological origin.


Assuntos
Cobre , Oligoelementos , Animais , Bovinos , Ferro , Isótopos , Zinco
12.
Anal Chem ; 92(24): 15975-15981, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33226203

RESUMO

Magnesium isotopic analysis of cerebrospinal fluid (CSF) is a potentially interesting approach for studies on neurodegeneration. However, this type of analysis is challenging because of the invasiveness of the sampling and small sample volume. In this work, a novel analytical method was developed for ultrasensitive Mg isotopic analysis of CSF microsamples via multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using high-gain 1013 Ω Faraday cup amplifiers. The intermediate and internal errors on the δ26Mg value were improved up to fourfold using 1013 Ω resistors for the monitoring of both the 24Mg and 26Mg isotopes and up to twofold using a 1011 Ω resistor for the most abundant 24Mg isotope and a 1013 Ω resistor for the 26Mg isotope. Magnesium isotope ratios measured at a concentration level of 7-10 µg L-1 were in good agreement with those obtained using the conventional method at a concentration level of 150 µg L-1. The expanded uncertainty for the quality control CSF material obtained at the ultratrace level was ±0.16‰. Ultrasensitive Mg isotopic analysis was carried out for CSF from hydrocephalus patients using only 5 µL of sample. δMg values thus obtained were not significantly different from those obtained using the conventional method using a sample volume of 400 µL instead (p ≤ 0.05). The Mg isotopic composition of the CSF from hydrocephalus patients ranged between -0.65 and 0.30‰, with a mean δ26Mg value of -0.14 ± 0.27‰.


Assuntos
Limite de Detecção , Magnésio/líquido cefalorraquidiano , Espectrometria de Massas/métodos , Gases em Plasma/química , Humanos , Hidrocefalia/líquido cefalorraquidiano , Controle de Qualidade
13.
Sci Rep ; 10(1): 16389, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009454

RESUMO

We have examined potential changes in the isotopic compositions of Fe, Cu and Zn (using multi-collector inductively coupled plasma-mass spectrometry) and the corresponding concentrations (using inductively coupled plasma-atomic emission spectrometry) in plasma from hematological malignancy (HM) patients and assessed their prognostic capability. Together with clinical laboratory test values, data were examined in view of a 5-years survival prediction. Plasma Cu and Zn isotope ratios and their concentrations were significantly different in HM patients compared to matched controls (P < 0.05). Both δ65Cu and δ66Zn values showed significant mortality hazard ratios (HRs) in HM. The group of patients with decreased δ65Cu and increased δ66Zn values showed significantly poorer survival from the early phase (HR 3.9; P = 0.001), forming a unique cohort not identified based on laboratory test values. Well-known prognostic factors for HM, such as the creatinine level, and anemia-related values were highly correlated with the δ66Zn value (P < 0.05). Time-dependent ROC curves based on the δ65Cu or δ66Zn value were similar to that based on the creatinine concentration (a well-known prognostic factor in HM), indicating that δ65Cu or δ66Zn values are useful for prognosis of HM. Variations in stable isotope ratios of essential mineral elements have thus been shown to reflect alterations in their homeostasis due to physiological changes in malignancies with higher sensitivity than concentrations do.


Assuntos
Radioisótopos de Cobre/sangue , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/mortalidade , Plasma/metabolismo , Isótopos de Zinco/sangue , Feminino , Neoplasias Hematológicas/metabolismo , Homeostase/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
14.
Anal Chim Acta ; 1130: 137-145, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892933

RESUMO

A sequential chromatographic separation procedure for subsequent high-precision isotopic analysis of Mg and Ca via multi-collector ICP-mass spectrometry (MC-ICP-MS) from a single aliquot of sample was developed and used for a variety of animal/human biofluids and tissues. The procedure consists of a one-stage Mg isolation protocol (for most of the sample types) and a three-stage isolation protocol for Ca. AG50W-X8 strong cation exchange resin was used for the isolation of Mg and Ca, while Sr-resin was used to additionally purify the Ca fraction from Sr. Potential effects on the Mg isotope ratio measurement results caused by the possible presence of concomitant matrix elements (Cu, Fe, Zn, Ca) were systematically evaluated. δ26Mg values were biased for a Fe/Mg ratio > 0.13 and a Ca/Mg ratio > 1.5, resulting in a shift towards a lighter Mg isotopic composition. It was shown that the Mg isotope ratio data for Mg standards, the isotopic reference materials ERM-AE143 and IRMM 009 and the biological samples investigated are located on a mass-dependent fractionation line. Biological reference materials and commercially available serum samples were analyzed for both their Mg and Ca isotope ratios. For some of the biomaterials analyzed, the Ca isotope ratio data as obtained using MC-ICP-MS were further validated via their determination using double-spike thermal ionization mass spectrometry (DS-TIMS). The expanded uncertainty for δ26Mg was ≤ 0.12‰ and for δ44/42Ca ≤ 0.29‰. Biological fluids and tissues of mice were analyzed to characterize the body distribution of the stable isotopes of Mg and Ca. The isotopic variability among the body compartments was about 1.5‰ for Mg and 1.0‰ for Ca. Among the tissues explored, muscle tissue shows the lightest Mg and Ca isotopic compositions and liver the heaviest Mg and Ca isotopic compositions, respectively.


Assuntos
Cromatografia , Isótopos , Animais , Espectrometria de Massas , Camundongos , Padrões de Referência
15.
BMC Res Notes ; 13(1): 225, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306999

RESUMO

OBJECTIVE: The occurrence of non-alcoholic fatty liver disease (NAFLD) is globally increasing. To challenge the current incidence of NAFLD, non-invasive markers that could identify patients at risk or monitor disease progression are an important need. Copper intake and organ copper concentrations have earlier been linked to NAFLD progression, but serum copper does not adequately represent the disease state. Cu atoms occur under the form of two stable isotopes, 63Cu and 65Cu, and the ratio of both (expressed as δ65Cu, in  ‰) in blood serum has been shown to be altered in chronic liver disease. To assess whether the Cu isotope ratio might predict disease occurrence and progression of NAFLD, the serum Cu isotopic composition of patients with different stages of NAFLD was determined. RESULTS: Our results showed that serum δ65Cu values were lower in NAFLD patients, already at the level of simple steatosis, and remained stable during further disease progression. ROC analysis shows an almost perfect diagnostic ability of serum δ65Cu values for NAFLD, but no discrimination between different severity degrees could be made. Therefore, the serum Cu isotopic composition might show potential for early diagnosis of NAFLD patients.


Assuntos
Cobre/sangue , Isótopos/análise , Isótopos/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Adulto , Estudos de Coortes , Progressão da Doença , Fígado Gorduroso/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Curva ROC
16.
Anal Chem ; 92(5): 3572-3580, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013393

RESUMO

This work evaluates the use of nanosecond laser ablation-multicollector inductively coupled plasma-mass spectrometry (ns-LA-MC-ICP-MS) for Fe isotopic analysis of glassy cosmic spherules. Several protocols for data acquisition from the transient signals were compared, with the integration method, i.e., isotope ratios obtained by dividing the corresponding signal intensities integrated over the selected signal segment, providing the best precision. The bias caused by instrumental mass discrimination was corrected for by a combination of internal correction using Ni as an internal standard (coming from a conebulized standard solution) and external correction using a matrix-matched standard. Laser spot size and repetition rate were adapted to match the signal intensities for sample and standard within ±10%. For in situ isotopic analysis, the precision of the δ56Fe values ranged between 0.02 and 0.11‰ (1 SD, based on 4 measurement sessions, each based on ablation along 5 lines for 30 s each) and 0.03-0.17‰ (SD, based on 3 measurement sessions) for glass reference materials and micrometeorites, respectively. Despite this excellent reproducibility, the variation of the isotope ratios along a single ablation line indicated isotopic inhomogeneity exceeding 1‰ in some micrometeorites. Isotopic analysis via pneumatic nebulization MC-ICP-MS, after sample digestion and chromatographic Fe isolation, was performed to validate the results obtained by in situ isotopic analysis, and good agreement was achieved between the δ-values obtained via both approaches and with those reported in literature for MPI-DING and USGS glass reference materials. Also for the glassy cosmic spherules, overall, there was a good match between the ns-LA-MC-ICP-MS and solution MC-ICP-MS results.

17.
J Pharm Biomed Anal ; 177: 112857, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31557587

RESUMO

Age-related macular degeneration (AMD), the main cause of irreversible blindness in people over 60 years of age, is an eye disease that evolves with loss of central vision. Although AMD manifests itself in the eye, blood is continuously flowing through the macular region, such that potential alterations in this region could be reflected in the composition of whole blood or plasma/serum. Therefore, the potential clinical relevance of analysis of serum samples was assessed because of the low degree of invasiveness of blood sampling. 40 initial samples (20 from controls and 20 from patients with the dry form of AMD) have been analysed in this work to investigate the possible occurrence of homeostatic alterations of essential mineral elements caused by the disease. Both major (Na, Mg, P and K) and trace (Fe, Cu and Zn) essential mineral elements were determined in blood serum using single-collector ICP-mass spectrometry. Also, the isotopic composition of Cu (an element proposed to be directly involved in the onset of AMD) was determined using multi-collector ICP-mass spectrometry. Unexpected light Cu isotopic compositions in three individuals assumed as controls, resulted in a re-evaluation of their clinical information and a later exclusion due to pathologies initially not accounted for. In this pilot study, a significant alteration in the δ65Cu value has been found between the two final cohorts (AMD patients: n = 20; controls n = 17), with lower δ65Cu values (i.e. an enrichment in the light 63Cu isotope) in the case of AMD. Also, higher serum concentrations of the elements P and Zn were established in AMD at a systemic level.


Assuntos
Cobre/sangue , Degeneração Macular/diagnóstico , Isótopos de Fósforo/sangue , Isótopos de Zinco/sangue , Idoso , Idoso de 80 Anos ou mais , Cobre/metabolismo , Feminino , Humanos , Degeneração Macular/sangue , Degeneração Macular/metabolismo , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Isótopos de Fósforo/metabolismo , Projetos Piloto , Isótopos de Zinco/metabolismo
18.
Anal Bioanal Chem ; 412(3): 727-738, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31836925

RESUMO

Bariatric surgery is an effective procedure to achieve weight loss in obese patients. However, homeostasis of essential metals may be disrupted as the main absorption site is bypassed. In this study, we determined Cu, Fe and Zn isotopic compositions in paired serum and whole blood samples of patients who underwent Roux-en-Y gastric bypass (RYGB) surgery for evaluation of longitudinal changes and their potential relation to mineral element concentrations and relevant clinical parameters used for monitoring the patient's condition. Samples from eight patients were collected pre-surgery and at 3, 6 and 12 months post-surgery. Multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) was used for high-precision isotope ratio measurements. Alterations in metal homeostasis related to bariatric surgery were reflected in the serum and whole blood Cu, Fe and Zn isotopic compositions. The serum and whole blood Cu became isotopically lighter (lower δ65Cu values) after bariatric surgery, reaching statistical significance at 6 months post-surgery (p < 0.05). The difference between the serum and the whole blood Zn isotopic composition increased after surgery, reaching significance from 6 months post-surgery onwards (p < 0.05). Those changes in Cu, Fe and Zn isotopic compositions were not accompanied by similar changes in their respective concentrations, making isotopic analysis more sensitive to physiological changes than elemental content. Furthermore, the Zn isotopic composition correlates with blood glycaemic and lipid parameters, while the Fe isotopic composition correlates with glycaemic parameters. Graphical Abstract.


Assuntos
Cobre/sangue , Derivação Gástrica , Ferro/sangue , Zinco/sangue , Adulto , Feminino , Homeostase , Humanos , Isótopos/sangue , Pessoa de Meia-Idade , Soro/química , Adulto Jovem
19.
Anal Bioanal Chem ; 411(19): 4963-4971, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31093701

RESUMO

Cu isotope fractionation was investigated in the human neuroblastoma SH-SY5Y cell line, in a proliferating/tumor phase (undifferentiated cells), and in a differentiated state (neuron-like cells), induced using retinoic acid (RA). The SH-SY5Y cell line displays genetic aberrations due to its cancerous origin, but differentiation drives the cell line towards phenotypes suitable for the research of neurological diseases (e.g., Alzheimer's disease or Parkinson's disease). Cellular Cu distribution was first explored by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging and, subsequently, Cu isotopic analysis was performed at cellular and sub-cellular levels via multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The SH-SY5Y cells showed a re-distribution of intracellular Cu upon RA differentiation. Both undifferentiated and differentiated cells became systematically enriched in the light 63Cu isotope with increasing intracellular Cu content. Differentiated neuron-like SH-SY5Y cells showed a heavier Cu isotopic composition (+ 0.3‰) than did the undifferentiated proliferating cells when exposed to Cu for 24 h. However, after a longer exposure time (72 h), no difference was observed between both cellular phenotypes. Mitochondrial fractions were enriched in the light 63Cu isotope, compared to whole cells, for both undifferentiated and differentiated cells (no significant difference). The Cu isotopic composition of the remaining cell lysates was heavier than that of the whole cells and + 0.2‰ heavier in the differentiated cells than in the undifferentiated cells. These results indicate that neuronal differentiation affects the Cu isotope fractionation accompanying Cu uptake in the cells, but this effect does not seem to be associated with the mitochondrial Cu pathway. Cu isotope fractionation can be an interesting tool for studying Cu metabolism at a (sub)-cellular level in functional neurons. Graphical abstract.


Assuntos
Fracionamento Celular , Cobre/isolamento & purificação , Isótopos/isolamento & purificação , Neuroblastoma/metabolismo , Neurônios/metabolismo , Frações Subcelulares/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/citologia
20.
Metallomics ; 11(6): 1093-1103, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31021334

RESUMO

Patients with chronic liver disease from different aetiologies show a light serum Cu isotopic composition compared to the reference population, with the enrichment in the 63Cu isotope correlating with the severity of the disease. However, the mechanisms underlying Cu isotope fractionation at the onset and during progression of the disease are still unclear. In this work, a common bile duct ligation (CBDL) murine model was used to investigate the effect of cholestasis-induced liver disease on the Cu isotopic composition. Wild type male and female mice underwent surgical ligation of the common bile duct and were sacrificed 2, 4 and 6 weeks, and 4, 6 and 8 weeks after the surgical intervention, respectively. The age- and gender-matched control mice underwent sham surgery. Disease progression was evaluated using serum bilirubin levels, hepatic pro-inflammatory chemokine levels and Metavir fibrosis score. CBDL-operated mice show an overall body enrichment in the light isotope 63Cu. The Cu isotopic composition of organs, bone and serum becomes gradually lighter compared to the sham-operated mice with increasing severity of the disease. The light Cu isotopic composition of the CBDL-operated mice might result from an altered Cu intake and/or excretion. As the intestinal uptake of dietary Cu is largely mediated by transporters of Cu(i), mRNA and protein expression levels of two major metal transporters (CTR1 and DMT1) and Cu reductases (STEAP proteins and duodenal cytochrome B) were examined in the duodenal tissues as potential factors inducing Cu isotope fractionation. However, no significant differences in protein expression levels were observed between the CBDL- and sham-operated mice.


Assuntos
Colestase/metabolismo , Cobre/metabolismo , Animais , Colestase/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Isótopos/metabolismo , Fígado/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...