Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 29(29-30): 4794-804, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21554913

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and boars, and respiratory disease in pigs of all ages. Antibodies against several viral envelope proteins are produced upon infection, and the glycoproteins GP4 and GP5 are known targets for virus neutralization. Still, substantial evidence points to the presence of more, yet unidentified neutralizing antibody targets in the PRRSV envelope proteins. The current study aimed to identify and characterize linear antigenic regions (ARs) within the entire set of envelope proteins of the European prototype PRRSV strain Lelystad virus (LV). Seventeen LV-specific antisera were tested in pepscan analysis on GP2, E, GP3, GP4, GP5 and M, resulting in the identification of twenty-one ARs that are capable of inducing antibodies upon infection in pigs. A considerable number of these ARs correspond to previously described epitopes in different European- and North-American-type PRRSV strains. Remarkably, the largest number of ARs was found in GP3, and two ARs in the GP3 ectodomain consistently induced antibodies in a majority of infected pigs. In contrast, all remaining ARs, except for a highly immunogenic epitope in GP4, were only recognized by one or a few infected animals. Sensitivity to antibody-mediated neutralization was tested for a selected number of ARs by in vitro virus-neutralization tests on alveolar macrophages with peptide-purified antibodies. In addition to the known neutralizing epitope in GP4, two ARs in GP2 and one in GP3 turned out to be targets for virus-neutralizing antibodies. No virus-neutralizing antibody targets were found in E, GP5 or M. Since the neutralizing AR in GP3 induced antibodies in a majority of infected pigs, the immunogenicity of this AR was studied more extensively, and it was demonstrated that the corresponding region in GP3 of virus strains other than LV also induces virus-neutralizing antibodies. This study provides new insights into PRRSV antigenicity, and contributes to the knowledge on protective immunity and immune evasion strategies of the virus.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Células Cultivadas , Macrófagos/virologia , Suínos
2.
Vet Immunol Immunopathol ; 141(3-4): 246-57, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21470695

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Despite great efforts of pig holders, veterinarians, researchers and vaccine developers, the virus still causes major production losses. It is clear that efficient and correct monitoring and rational development of vaccines are crucial in the combat against this pathogen. PRRSV-specific monoclonal antibodies (mAbs) are essential tools for both diagnostic and research purposes. This study describes the production of PRRSV GP3-, GP5- and N-specific hybridomas and an extensive characterization of the mAbs. The N-specific mAbs generated in this study appear to be useful tools for diagnostics, as they were found to react with genetically very different PRRSV isolates and may serve to discriminate between European and American type PRRSV isolates. These mAbs also allowed detection of the PRRSV N protein in both formalin-fixed, paraffin-embedded tissue sections and frozen tissue sections of PRRSV-infected lungs, further illustrating their diagnostic value. Different neutralization assays pointed out that none of the GP3- and GP5-specific mAbs tested shows virus-neutralizing capacity. This is noteworthy, as these mAbs recognize epitopes in the predicted ectodomains of their target protein and since the GP5-specific antibodies specifically react with the antigenic region that corresponds to the "major neutralizing epitope" suggested for American type PRRSV. The current findings argue against an important role of the identified antigenic regions in direct antibody-mediated neutralization of European type PRRSV in vivo. However, it is also clear that findings concerning a specific PRRSV epitope cannot always be generalized, as the antigenic determinants and their biological properties may differ radically between different virus isolates.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Epitopos , Regulação Viral da Expressão Gênica , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Testes de Neutralização , Suínos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
3.
Virus Res ; 154(1-2): 104-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837070

RESUMO

The structural envelope glycoprotein GP4 of European porcine reproductive and respiratory syndrome virus (PRRSV) strains contains a highly variable neutralizing epitope that is susceptible to neutralizing antibody-mediated selective pressure in vitro. In this study, it was analyzed what happens with this neutralizing epitope during infection in vivo in the presence of neutralizing antibodies. A neutralizing antibody-mediated selective pressure was created in 30 pigs by vaccination prior to inoculation with infectious Lelystad virus (LV). Nine viable neutralizing antibody-escape variants were isolated from 9 of these pigs and their neutralizing antibody-escape mutant-identity was confirmed by the acquired resistance to neutralization by autologous neutralizing sera. Six out of 9 neutralizing antibody-escape variants contained aa substitutions in the GP4 neutralizing epitope and had become resistant to neutralization by a monoclonal antibody (mAb) against this epitope. In addition, in all 6 corresponding pigs, antibodies against this epitope were detected early in infection. In contrast to these 6 virus variants, the 3 other antibody-escape variants did not contain aa substitutions in the GP4 neutralizing epitope and were still sensitive to neutralization by the GP4-specific mAb. These antibody-escape variants were isolated from pigs that did not contain antibodies against this epitope early in infection. All these findings together strongly indicate that aa substitutions in the GP4 neutralizing epitope can abrogate antibody recognition, and that neutralizing antibodies might be responsible for the selection of neutralizing antibody-resistant variants with aa substitutions in the neutralizing epitope on GP4. In conclusion, this study indicates that neutralizing antibodies in pigs might be a driving force in the rapid evolution of the neutralizing epitope on GP4 of European PRRSV strains.


Assuntos
Adaptação Biológica , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas do Envelope Viral/imunologia , Substituição de Aminoácidos/genética , Animais , Antígenos Virais/genética , Análise Mutacional de DNA , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Evolução Molecular , Mutação de Sentido Incorreto , Suínos , Proteínas do Envelope Viral/genética
4.
Viral Immunol ; 23(4): 403-13, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20712485

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) can induce severe reproductive failure in sows, and is involved in the porcine respiratory disease complex. The glycoprotein GP4 of the European prototype PRRSV strain Lelystad virus (LV) contains a linear neutralizing epitope that is located in a highly variable region. The current study aimed to evaluate the antibody response against this and other epitopes on GP4 to infection of pigs with European-type PRRSV. It was shown that three virus strains, differing in the region that corresponds to the neutralizing epitope on GP4 of LV, strongly induce antibodies against this area. Antibodies against the epitopes of the different virus strains were purified from polyclonal swine sera, and used in virus-neutralization tests on primary alveolar macrophages. This revealed that antibodies against the variable region in GP4 of different virus strains are able to neutralize infection with homologous but not heterologous virus strains.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Síndrome Respiratória e Reprodutiva Suína/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas Estruturais Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/isolamento & purificação , Especificidade de Anticorpos , Reações Cruzadas , Epitopos/genética , Variação Genética , Dados de Sequência Molecular , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Alinhamento de Sequência , Suínos/virologia , Proteínas Estruturais Virais/genética
5.
Arch Virol ; 155(3): 371-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20052599

RESUMO

Glycoprotein 4 (GP4) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a highly variable neutralizing epitope. The present study aimed to investigate whether this epitope is susceptible to immunoselection by antibodies in vitro. Cultivation of PRRSV in vitro in the continuous presence of neutralizing monoclonal antibodies (mAbs) directed against this epitope resulted in the selection of mAb-resistant PRRSV strains within five passages. Comparison of the GP4 amino acid (aa) sequence of the original PRRSV strain with the GP4 aa sequences of the mAb-resistant PRRSV strains revealed aa substitutions within this epitope. In conclusion, this study shows that the neutralizing epitope on GP4 is susceptible to immunoselection by antibodies in vitro.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Seleção Genética , Proteínas Virais/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Análise Mutacional de DNA , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Análise de Sequência de DNA , Inoculações Seriadas , Suínos
6.
Vet Res ; 40(5): 46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19445889

RESUMO

The replication of porcine reproductive and respiratory syndrome virus (PRRSV) in lungs and lymphoid tissues of PRRSV-infected pigs is already strongly reduced before the appearance of neutralizing antibodies, indicating that other immune mechanisms are involved in eliminating PRRSV at those sites. This study aimed to determine whether PRRSV Lelystad virus (LV)-specific cytotoxic T-lymphocytes (CTL) can efficiently eliminate PRRSV-infected alveolar macrophages. Therefore, CTL assays were performed with PRRSV-infected alveolar macrophages as target cells and autologous peripheral blood mononuclear cells (PBMC) from PRRSV-infected pigs as a source of PRRSV-specific CTL. PBMC of 3 PRRSV-infected pigs were used either directly in CTL assays, or following restimulation in vitro. CTL assays with pseudorabies virus (PRV) Begonia-infected alveolar macrophages and autologous PBMC, from 2 PRV Begonia-inoculated pigs, were performed for validation of the assays. In freshly isolated PBMC, derived from PRRSV-infected pigs, CTL activity towards PRRSV-infected macrophages was not detected until the end of the experiment (56 days post infection-dpi). Restimulating the PBMC with PRRSV in vitro resulted in proliferation of CD3+CD8high cells starting from 14 dpi. Although CD+CD8high cells are generally considered to be CTL, CTL activity was not detected in PRRSV-restimulated PBMC of the 3 pigs until 49 dpi. A weak PRRSV-specific CTL activity was observed only at 56 dpi in PRRSV-restimulated PBMC of one pig. In contrast, a clear CTL activity was observed in PRV Begonia-restimulated PBMC, derived from PRV Begonia-infected pigs, starting from 21 dpi. This study indicates that PBMC of PRRSV-infected pigs contain proliferating CD3+CD8high cells upon restimulation in vitro, but these PBMC fail to exert CTL activity towards PRRSV-infected alveolar macrophages.


Assuntos
Complexo CD3/metabolismo , Antígenos CD8/metabolismo , Macrófagos/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T Citotóxicos/virologia , Animais , Células Cultivadas , Citometria de Fluxo , Interferon gama/metabolismo , Macrófagos/metabolismo , Suínos , Linfócitos T Citotóxicos/metabolismo , Viremia
7.
Arch Virol ; 153(8): 1453-65, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18563285

RESUMO

Different viruses have evolved strategies that inhibit apoptosis of the host cell early in infection and/or induce apoptosis in the host cell late in infection. In this study, it was investigated if and when porcine reproductive and respiratory syndrome virus (PRRSV) modulates apoptosis in PRRSV-infected macrophages. The PRRSV replication cycle in macrophages was completed within 12 h post-inoculation (hpi). PRRSV-infected macrophages, treated with staurosporine at 4, 5, 6 and 8 hpi, were significantly protected against staurosporine-induced apoptosis, but PRRSV-infected macrophages, treated with staurosporine at 12 hpi, were not. In contrast, starting from 12 hpi, all PRRSV-infected macrophages died by caspase-dependent apoptosis, which culminated in secondary necrosis. Treatment of PRRSV-infected macrophages with Z-Val-DL-Asp-fluoromethylketone indicated that apoptosis late in infection was not essential for efficient virus release. Anti- and pro-apoptotic activities were also observed in PRRSV-infected Marc-145 cells. In conclusion, this study shows that PRRSV stimulates anti-apoptotic pathways in macrophages early in infection and that PRRSV-infected macrophages die by apoptosis late in infection.


Assuntos
Apoptose/fisiologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Replicação Viral/fisiologia , Animais , Apoptose/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Estaurosporina/farmacologia , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia
8.
J Gen Virol ; 87(Pt 8): 2341-2351, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16847130

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) can evade the host immune system, which results in prolonged virus replication for several weeks to several months. To date, the mechanisms of PRRSV immune evasion have not been investigated in detail. One possible immune-evasion strategy is to avoid incorporation of viral proteins into the plasma membrane of infected cells, as this prevents recognition by virus-specific antibodies and consequent cell lysis either by the classical complement pathway or by antibody-dependent, cell-mediated cytotoxicity. In this study, viral proteins were not observed in the plasma membrane of in vitro-infected macrophages by using confocal microscopy or flow cytometry. Subsequently, the sensitivity of PRRSV-infected macrophages towards antibody-dependent, complement-mediated cell lysis (ADCML) was determined by using an ADCML assay. A non-significant percentage of PRRSV-infected cells were killed in the assay, showing that in vitro PRRSV-infected macrophages are protected against ADCML. PRRSV proteins were not detected in the plasma membrane of in vivo-infected alveolar macrophages and ADCML was also not observed. Together, these data indicate that viral proteins are not incorporated into the plasma membrane of PRRSV-infected macrophages, which makes infected cells invisible to PRRSV-specific antibodies. This absence of viral proteins on the cell surface could explain the protection against ADCML observed for in vitro and in vivo PRRSV-infected macrophages, and may play a role in virus persistence.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Proteínas do Sistema Complemento/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas Virais/análise , Membrana Celular/química , Testes Imunológicos de Citotoxicidade , Citometria de Fluxo , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...