Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 7(7): e2420090, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980675

RESUMO

Importance: Many military service members and veterans report insomnia after sustaining traumatic brain injury (TBI). Limitations of first-line treatment, cognitive-behavioral therapy for insomnia (CBT-I), include availability of qualified clinicians, low completion rates, and cost. Objective: To investigate the feasibility and efficacy of internet-guided CBT-I (eCBT-I) in military service members and veterans with insomnia and a history of TBI. Design, Setting, and Participants: This randomized clinical trial of fully remote internet-based interventions and evaluations was conducted from September 1, 2020, to June 30, 2021, with 3 months of follow-up. Participants included a volunteer sample of military service members and veterans aged 18 to 64 years with a history of mild TBI/concussion and at least moderately severe insomnia defined as an insomnia severity index (ISI) score of greater than 14 and Pittsburgh Sleep Quality Index of greater than 4. Self-reported race, ethnicity, and educational level were generally representative of the US military. Data were analyzed from October 21, 2021, to April 29, 2024. Intervention: Internet-based CBT-I delivered over 6 weekly lesson modules with assigned homework activities. Main Outcomes and Measures: The prespecified primary outcome measure was change in ISI score over time. Prespecified secondary outcome measures included self-reported measures of depression symptoms, posttraumatic stress disorder (PTSD) symptoms, sleep quality, migraine impact, and fatigue. Results: Of 204 people screened, 125 were randomized 3:1 to eCBT-I vs online sleep education, and 106 completed baseline evaluations (83 men [78.3%]; mean [SD] age, 42 [12] years). Of these, 22 participants (20.8%) were Hispanic or Latino and 78 (73.6%) were White. Fifty participants completed postintervention evaluations, and 41 completed the 3-month follow-up. Baseline mean (SD) ISI scores were 19.7 (4.0) in those randomized to eCBT-I and 18.9 (5.0) in those randomized to sleep education. After intervention, mean (SD) ISI scores were 13.7 (5.6) in those randomized to eCBT-I and 16.6 (5.7) in those randomized to sleep education. The difference in the extent of reduction in ISI scores between groups was 3.5 (95% CI,-6.5 to -0.4 [P = .03]; Cohen d, -0.32 [95% CI, -0.70 to -0.04]). In the eCBT-I group, the extent of insomnia improvement correlated with the extent of depressive symptom improvement (Spearman ρ = 0.68 [P < .001]), PTSD symptoms (ρ = 0.36 [P = .04]), sleep quality (ρ = 0.54 [P = .001]), and fatigue impact (ρ = -0.58 [P < .001]) but not migraine-related disability. Conclusions and Relevance: The findings of this randomized clinical trial suggest that fully remote eCBT-I was moderately feasible and effective for self-reported insomnia and depression symptoms in military service members and veterans with a history of TBI. There is great potential benefit for eCBT-I due to low availability and cost of qualified CBT-I clinicians, although optimization of completion rates remains a challenge. Future studies may use home-based objective sleep assessments and should increase study retention. Trial Registration: ClinicalTrials.gov Identifier: NCT04377009.


Assuntos
Lesões Encefálicas Traumáticas , Terapia Cognitivo-Comportamental , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/terapia , Terapia Cognitivo-Comportamental/métodos , Masculino , Adulto , Feminino , Lesões Encefálicas Traumáticas/complicações , Pessoa de Meia-Idade , Veteranos/psicologia , Veteranos/estatística & dados numéricos , Intervenção Baseada em Internet , Adulto Jovem , Militares/psicologia , Militares/estatística & dados numéricos , Internet , Resultado do Tratamento , Adolescente
2.
Brain Commun ; 2(2): fcaa143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33829156

RESUMO

The meninges serve as a functional barrier surrounding the brain, critical to the immune response, and can be compromised following head trauma. Meningeal enhancement can be detected on contrast-enhanced MRI in patients presenting with acute traumatic brain injury, even when head CT is negative. Following head trauma, gadolinium-based contrast appears to extravasate from the vasculature, enhancing the dura within minutes, and later permeates the subarachnoid space. The aims of this study were to characterize the initial kinetics of the uptake of contrast agent after injury and the delayed redistribution of contrast enhancement in the subarachnoid space in hyperacute patients. Neuroimaging was obtained prospectively in two large ongoing observational studies of patients aged 18 years or older presenting to the emergency department with suspected acute head injury. Dynamic contrast-enhanced MRI studies in a cohort of consecutively enrolling patients with mild traumatic brain injury (n = 36) determined that the kinetic half-life of dural-related meningeal enhancement was 1.3 ± 0.6 min (95% enhancement within 6 min). The extravasation of contrast into the subarachnoid space was investigated in a cohort of CT negative mild traumatic brain injury patients initially imaged within 6 h of injury (hyperacute) who subsequently underwent a delayed MRI, with no additional contrast administration, several hours after the initial MRI. Of the 32 patients with delayed post-contrast imaging, 18 (56%) had conspicuous expansion of the contrast enhancement into the subarachnoid space, predominantly along the falx and superior sagittal sinus. Patients negative for traumatic meningeal enhancement on initial hyperacute MRI continued to have no evidence of meningeal enhancement on the delayed MRI. These studies demonstrate that (i) the initial enhancement of the traumatically injured meninges occurs within minutes of contrast injection, suggesting highly permeable meningeal vasculature, and that (ii) contrast in the meninges redistributes within the subarachnoid space over the period of hours, suggesting a compromise in the blood-brain and/or blood-cerebrospinal barriers. Data from the parent study indicate that up to one in two patients with mild traumatic brain injury have traumatic brain injury on acute (<48 h) MRI, with a higher prevalence seen in patients with moderate or severe traumatic brain injury. The current study's findings of traumatic meningeal enhancement and the subsequent delayed extravasation of contrast into the subarachnoid spaces indicate that a substantial percentage of patients with even mild traumatic brain injury may have a transient disruption in barriers separating the vasculature from the brain.

3.
Front Neurol ; 10: 246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972003

RESUMO

The neuropathology of traumatic brain injury (TB) is diverse, including primary injury to neurons, axons, glial cells, vascular structures, and secondary processes, such as edema and inflammation that vary between individual patients. Traumatic microvascular injury is an important endophenotype of TBI-related injury. We studied patients who sustained a TBI requiring ER evaluation and had an MRI performed within 48 h of injury. We classified patients into 3 groups based on their MRI findings: (1) those that had evidence of traumatic microvascular injury on susceptibility or diffusion weighted MRI sequences without frank hemorrhage [Traumatic Vascular Injury (TVI) group; 20 subjects]. (2) those who had evidence of intraparenchymal, subdural, epidural, or subarachnoid hemorrhage [Traumatic Hemorrhage (TH) group; 26 subjects], and (3) those who had no traumatic injuries detected by MRI [MRI-negative group; 30 subjects]. We then measured plasma protein biomarkers of vascular injury [von Willebrand Factor (vWF) or cellular fibronectin (cFn)] and axonal injury (phosphorylated neurofilament heavy chain; pNF-H). We found that the TVI group was characterized by decreased expression of plasma vWF (p < 0.05 compared to MRI-negative group; p < 0.00001 compared to TH group) ≤48 h after injury. cFN was no different between groups ≤48 h after injury, but was increased in the TVI group compared to the MRI-negative (p < 0.00001) and TH (p < 0.00001) groups when measured >48 h from injury. pNF-H was increased in both the TH and TVI groups compared to the MRI-negative group ≤48 h from injury. When we used the MRI grouping and molecular biomarkers in a model to predict Glasgow Outcome Scale-Extended (GOS-E) score at 30-90 days, we found that inclusion of the imaging data and biomarkers substantially improved the ability to predict a good outcome over clinical information alone. These data indicate that there is a distinct, vascular-predominant endophenotype in a subset of patients who sustain a TBI and that these injuries are characterized by a specific biomarker profile. Further work to will be needed to determine whether these biomarkers can be useful as predictive and pharmacodynamic biomarkers for vascular-directed therapies after TBI.

4.
J Neurotrauma ; 36(8): 1335-1342, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30351183

RESUMO

Accurate diagnosis of traumatic brain injury (TBI) is critical to ensure that patients receive appropriate follow-up care, avoid risk of subsequent injury, and are aware of possible long-term consequences. However, diagnosis of TBI, particularly in the emergency department (ED), can be difficult because the symptoms of TBI are vague and nonspecific, and patients with suspected TBI may present with additional injuries that require immediate medical attention. We performed a retrospective chart review to evaluate accuracy of TBI diagnosis in the ED. Records of 1641 patients presenting to the ED with suspected TBI and a head computed tomography (CT) were reviewed. We found only 47% of patients meeting the American Congress of Rehabilitation Medicine criteria for TBI received a documented ED diagnosis of TBI in medical records. After controlling for demographic and clinical factors, patients presenting at a level I trauma center, with cause of injury other than fall, without CT findings of TBI, and without loss of consciousness were more likely to lack documented diagnosis despite meeting diagnostic criteria for TBI. A greater proportion of patients without documented ED diagnosis of TBI were discharged home compared to those with a documented diagnosis of TBI (58% vs. 40%; p < 0.001). Together, these data suggest that many patients who have sustained a TBI are discharged home from the ED without a documented diagnosis of TBI, and that improved awareness and implementation of diagnostic criteria for TBI is important in the ED and for in- and outpatient providers.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Serviço Hospitalar de Emergência/normas , Neurologia/normas , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
5.
J Neurotrauma ; 34(4): 853-860, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27430610

RESUMO

Injury to the meninges is not uncommon after traumatic brain injury (TBI), yet minimal research has been directed toward understanding the relevant biology. After a concussive event, the meninges are observed to abnormally enhance on post-contrast magnetic resonance imaging (MRI) in some patients, but not all. The aim of this work is to identify genes differentially expressed in patients with meningeal injury. Patients presenting to the emergency room with suspected TBI received a standard research MRI and blood draw within 48 h of injury. Two groups of patients were included: those with and without abnormal enhancement of the meninges on post-contrast MRI, both without other imaging findings. Groups were compared on microarray gene expression in peripheral blood samples using Affymetrix (Santa Clara, CA) and Partek Genomics Suite (Partek, Inc., St. Louis, MO) software (false discovery rate, <0.05). Forty patients were enrolled with a time from injury to MRI/blood draw of 16.8 h (interquartile range, 7.5-24.1). We observed 76 genes to be differentially expressed in patients with meningeal injury compared to those without, such as receptor for Fc fragment of IgA, multiple C2 domains, transmembrane 2, and G-protein-coupled receptor 27, which have been previously associated with initiating inflammatory mediators, phagocytosis, and other regulatory mechanisms. Post-contrast MRI is able to detect meningeal injury and has a unique biological signature observed through gene expression. These findings suggest that an acute inflammatory response occurs in response to injury to the meninges following a concussion.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/genética , Expressão Gênica/genética , Meninges/diagnóstico por imagem , Meninges/lesões , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...