Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(32): 12014-12026, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37593378

RESUMO

This work is focused on the application of Life Cycle Assessment (LCA) methodology for the quantification of the potential environmental impacts associated with the obtainment of levulinic acid from residual Cynara cardunculus L. biomass and its subsequent valorization in innovative bioplasticizers for tuning the properties as well as the processability of biopolymers. This potentially allows the production of fully biobased and biodegradable bioplastic formulations, thus addressing the issues related to the fossil origin and nonbiodegradability of conventional additives, such as phthalates. Steam explosion pretreatment was applied to the epigean residue of C. cardunculus L. followed by a microwave-assisted acid-catalyzed hydrolysis. After purification, the as-obtained levulinic acid was used to synthesize different ketal-diester derivatives through a three-step selective synthesis. The levulinic acid-base additives demonstrated remarkable plasticizing efficiency when added to biobased plastics. The LCA results were used in conjunction with those from the experimental activities to find the optimal compromise between environmental impacts and mechanical and thermal properties, induced by the bioadditives in poly(3-hydroxybutyrate), PHB biopolymer.

2.
Waste Manag ; 138: 219-233, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902684

RESUMO

Global waste is expected to grow substantially by 2050, therefore, defining an effective waste management strategy is a crucial topic for both industry and academia. Nowadays, food and green waste, in particular, represent a large share of the total waste production. All this considered, effectively processing and eventually reusing materials such as waste cooking oil is of paramount importance. This study investigates the potential environmental impact and the primary energy consumption for three waste cooking oil valorization pathways i.e. biodiesel, direct burning fuel, additive for recycling aged-asphalt, as well as a new application, i.e. phase change material, compared to their specific more common alternative based on a cradle-to-gate approach. The aim is to identify and recommend the most advantageous alternative in terms of environmental impact. Results showed that the waste cooking oil has a lower impact in all comparisons made, except as phase change material. The less effective performance in some cases was compensated by the waste oil entry as a burden-free resource under an attributional model. The best profile of the waste cooking oil is as direct burning fuel. However, the binder asphalt substitution is highly recommended due to the nature of the application. The major obstacles to the waste cooking oil usage are the limited stock, composition and quality variability, and the difficulty of proper collection.


Assuntos
Óleos de Plantas , Gerenciamento de Resíduos , Biocombustíveis/análise , Culinária , Reciclagem
3.
Biotechnol Rep (Amst) ; 24: e00367, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31453116

RESUMO

Stranded driftwood feedstocks may represent, after pretreatment with steam explosion and enzymatic hydrolysis, a cheap C-source for producing biochemicals and biofuels using oleaginous yeasts. The hydrolysis was optimized using a response surface methodology (RSM). The solid loading (SL) and the dosage of enzyme cocktail (ED) were variated following a central composite design (CCD) aimed at optimizing the conversion of carbohydrates into lipids (YL) by the yeast Solicoccozyma terricola DBVPG 5870. A second-order polynomial equation was computed for describing the effect of ED and SL on YL. The best combination (ED = 3.10%; SL = 22.07%) for releasing the optimal concentration of carbohydrates which gave the highest predicted YL (27.32%) was then validated by a new hydrolysis. The resulting value of YL (25.26%) was close to the theoretical maximum value. Interestingly, fatty acid profile achieved under the optimized conditions was similar to that reported for palm oil.

4.
Materials (Basel) ; 11(6)2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29882857

RESUMO

The use of Phase Change Material (PCM) for improving building indoor thermal comfort and energy saving has been largely investigated in the literature in recent years, thus confirming PCM’s capability to reduce indoor thermal fluctuation in both summer and winter conditions, according to their melting temperature and operation boundaries. Further to that, the present paper aims at investigating an innovative use of PCM for absorbing heat released by cement during its curing process, which typically contributes to micro-cracking of massive concrete elements, therefore compromising their mechanical performance during their service life. The experiments carried out in this work showed how PCM, even in small quantities (i.e., up to 1% in weight of cement) plays a non-negligible benefit in reducing differential thermal increases between core and surface and therefore mechanical stresses originating from differential thermal expansion, as demonstrated by thermal monitoring of cement-based cubes. Both PCM types analyzed in the study (with melting temperatures at 18 and 25 ∘ C) were properly dispersed in the mix and were shown to be able to reduce the internal temperature of the cement paste by several degrees, i.e., around 5 ∘ C. Additionally, such small amount of PCM produced a reduction of the final density of the composite and an increase of the characteristic compressive strength with respect to the plain recipe.

5.
Biotechnol Biofuels ; 11: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796088

RESUMO

BACKGROUND: Some lignocellulosic biomass feedstocks occur in Mediterranean Countries. They are still largely unexploited and cause considerable problems due to the lack of cost-effective harvesting, storage and disposal technologies. Recent studies found that some basidiomycetous yeasts are able to accumulate high amount of intracellular lipids for biorefinery processes (i.e., biofuels and biochemicals). Accordingly, the above biomass feedstocks could be used as carbon sources (after their pre-treatment and hydrolysis) for lipid accumulation by oleaginous yeasts. RESULTS: Cardoon stalks, stranded driftwood and olive tree pruning residues were pre-treated with steam-explosion and enzymatic hydrolysis for releasing free mono- and oligosaccharides. Lipid accumulation tests were performed at two temperatures (20 and 25 °C) using Leucosporidium creatinivorum DBVPG 4794, Naganishia adeliensis DBVPG 5195 and Solicoccozyma terricola DBVPG 5870. S. terricola grown on cardoon stalks at 20 °C exhibited the highest lipid production (13.20 g/l), a lipid yield (28.95%) close to the maximum theoretical value and a lipid composition similar to that found in palm oil. On the contrary, N. adeliensis grown on stranded driftwood and olive tree pruning residues exhibited a lipid composition similar to those of olive and almonds oils. A predictive evaluation of the physical properties of the potential biodiesel obtainable by lipids produced by tested yeast strains has been reported and discussed. CONCLUSIONS: Lipids produced by some basidiomycetous yeasts grown on Mediterranean lignocellulosic biomass feedstocks could be used as supplementary sources of oils for producing biofuels and biochemicals.

6.
Sci Total Environ ; 615: 404-411, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988076

RESUMO

The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm3, obtained mixing 0.830Nm3 of methane-enriched biogas and 0.132Nm3 of synthetic methane. The final volume composition was: 73.82% CH4, 19.47% CO2, 0.67% H2, 1.98% O2, 4.06% N2 and the energy content was 28.0MJ/Nm3. The functional unit is the unitary amount of produced biosynthetic methane in Nm3. Carbon and energy footprints are 0.7081kgCO2eq/Nm3 and 28.55MJ/Nm3, respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75.

7.
Waste Manag ; 73: 496-503, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28579143

RESUMO

A particular approach to the task of energy conversion of a residual waste material was properly experienced during the implementation of the national funded Enerpoll project. This project is a case study developed in the estate of a poultry farm that is located in a rural area of central Italy (Umbria Region); such a farm was chosen for the research project since it is almost representative of many similar small-sized breeding realties of the Italian regional context. The purpose of the case study was the disposal of a waste material (i.e. poultry manure) and its energy recovery; this task is in agreement with the main objectives of the new Energy Union policy. Considering this background, an innovative gasification plant (300KW thermal power) was chosen and installed for the experimentation. The novelty of the investigated technology is the possibility to achieve the production of thermal energy burning just the produced syngas and not directly the solid residues. This aspect allows to reduce the quantity of nitrogen released in the atmosphere by the exhaust flue gases and conveying it into the solid residues (ashes). A critical aspect of the research program was the optimization of the pretreatment (reduction of the water content) and the dimensional homogenization of the poultry waste before its energy recovery. This physical pretreatment allowed the reduction of the complexity of the matrix to be energy enhanced. Further to the real scale plant monitoring, a complete Aspen Plus v.8.0 model was also elaborated for the prediction of the quality of the produced synthesis gas as a function of both the gasification temperature and the equivalence ratio (ER). The model is an ideal flowchart using as input material just the homogenized and dried material. On the basis of the real monitored thermal power (equal to about 200kW average value in an hour) the model was used for the estimation of the syngas energy content (i.e. LHV) that resulted in the range of 3-5MJ/m3 for an equivalence ratio (ER) equal to 0.2.


Assuntos
Aves Domésticas , Eliminação de Resíduos , Gerenciamento de Resíduos , Animais , Fenômenos Químicos , Gases , Itália
8.
Appl Biochem Biotechnol ; 174(1): 156-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25030294

RESUMO

The study investigated the production of bioethanol from softwood, in particular pine wood chip. The steam explosion pretreatment was largely investigated, evaluating also the potential use of a double-step process to increase ethanol production through the use of both solid and liquid fraction after the pretreatment. The pretreatment tests were carried out at different conditions, determining the composition of solid and liquid fraction and steam explosion efficiency. The enzymatic hydrolysis was carried out with Ctec2 enzyme while the fermentation was carried out using Saccharomyces Cerevisiae yeast "red ethanol". It was found that the best experimental result was obtained for a single-step pretreated sample (10.6 g of ethanol/100 g of initial biomass dry basis) for a 4.53 severity. The best double-step overall performance was equal to 8.89 g ethanol/100 g of initial biomass dry basis for a 4.27 severity. The enzymatic hydrolysis strongly depended on the severity of the pretreatment while the fermentation efficiency was mainly influenced by the concentration of the inhibitors. The ethanol enhancing potential of a double-step steam explosion could slightly increase the ethanol production compared to single-step potential.


Assuntos
Biomassa , Celulase/química , Etanol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vapor , Madeira/química , Hidrólise , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...